[1]
Peng, D. X.: Optimization of Welding Parameters on Wear Performance of Cladded Layer with TiC Ceramic via a Taguchi Approach, Tribology Transactions, 2012, 55 (1), pp.122-129.
DOI: 10.1080/10402004.2011.636172
Google Scholar
[2]
Herbst, S.; Williams, S.; Ganguly, S.: A Feasibility Study on Manufacturing of Functionally Graded Structures Using SiC Ceramic Powder in a Steel-Based Matrix by Gas Tungsten Arc Welding (GTAW), Steel Research International, 2012, 83 (6), pp.546-553.
DOI: 10.1002/srin.201100271
Google Scholar
[3]
Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A. B.: Modelling of gas-metal arc welding taking into account metal vapour, Journal of Physics D-Applied Physics, 2010, 43 (43), 434008.
DOI: 10.1088/0022-3727/43/43/434008
Google Scholar
[4]
Lin, Y. C.; Wang, S. W.: Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International, 2003, 36 (1), pp.1-9.
DOI: 10.1016/s0301-679x(02)00094-4
Google Scholar
[5]
Arenas, M. F.; Acoff, V. L.: Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding, Welding Journal, 2003, 82 (5), pp. 110s-115s.
DOI: 10.1515/htmp.2004.23.1.25
Google Scholar
[6]
Chen, J. H.; Hsieh, C. C.; Hua, P. S.; Chang, C. M.; Lin, C. M.; Wu, P. T. Y.; Wu, W. T.: Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW), Metals and Materials International, 2013, 19 (1), pp.93-98.
DOI: 10.1007/s12540-013-1015-4
Google Scholar
[7]
Lin, Y. C.; Chang, K. Y.: Elucidating the microstructure and erosive wear of ceramic powder alloying on AISI 1050 steel, Surface & Coatings Technology, 2012, 207, pp.493-502.
DOI: 10.1016/j.surfcoat.2012.07.053
Google Scholar
[8]
Lin, Y. C.; Lin, Y. C.; Chen, Y. C.: Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder, Materials & Design, 2012, 36, pp.584-589.
DOI: 10.1016/j.matdes.2011.12.007
Google Scholar
[9]
Wang, Z.; Zheng, W.; Zhou, X.: Microstructure and performance of in-situ synthesis TiN particle reinforced Ni-matrix composite coating, pp.
Google Scholar
[10]
Mohan, L.; Anandan, C.: Effect of gas composition on corrosion behavior and growth of apatite on plasma nitrided titanium alloy Beta-21S, Applied Surface Science, 2013, 268, pp.288-296.
DOI: 10.1016/j.apsusc.2012.12.080
Google Scholar
[11]
Zhao, L. D.; Lugscheider, E.: Reactive plasma spraying of TiAl6V4 alloy, Wear, 2002, 253, (11-12), pp.1214-1218.
DOI: 10.1016/s0043-1648(02)00246-6
Google Scholar
[12]
Adjaottor, A. A.; Meletis, E. I.; Logothetidis, S.; Alexandrou, I.; Kokkou, S.: Effect of substrate bias on sputter-deposited TiCx, TiNy and TiCxNy thin films, Surface & Coatings Technology, 1995, 76 (1-3), pp.142-148.
DOI: 10.1016/0257-8972(95)02594-4
Google Scholar
[13]
Man, H. C.; Zhang, S.; Cheng, F. T.; Guo, X.: In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding, Surface & Coatings Technology, 2006, 200 (16-17), pp.4961-4966.
DOI: 10.1016/j.surfcoat.2005.05.017
Google Scholar
[14]
Cheng, B. W.; Chua, C. L.; Yang, Z. H.; Teepe, M.; Knollenberg, C.; Strittmatter, A.; Johnson, N.: Nitride Laser Diodes With Nonepitaxial Cladding Layers, Ieee Photonics Technology Letters, 2010, 22 (5), pp.329-331.
DOI: 10.1109/lpt.2009.2039564
Google Scholar
[15]
Wu, Q. L.; Li, W. G.: The Microstructure and Wear Properties of Laser-Clad WC-Cr3C2 Cermet Coating on Steel Substrate, Materials Transactions, 2011, 52 (3), pp.560-563.
DOI: 10.2320/matertrans.m2010410
Google Scholar
[16]
Anal, A.; Bandyopadhyay, T. K.; Das, K.: Synthesis and characterization of TiB2-reinforced iron-based composites, Journal of Materials Processing Technology, 2006, 172 (1), pp.70-76.
DOI: 10.1016/j.jmatprotec.2005.09.011
Google Scholar
[17]
Du, B. S.; Zou, Z. D.; Wang, X. H.; Qu, S. Y.: In situ synthesis of TiB2/Fe composite coating by laser cladding, Materials Letters, 2008, 62 (4-5), pp.689-691.
DOI: 10.1016/j.matlet.2007.06.036
Google Scholar
[18]
Liu, S.; Zhang, W. P.: Research on microstructure of in situ synthesized TiB2/Ni metal-ceramics composite coating, Journal of Alloys and Compounds, 2005, 391 (1-2), pp.146-150.
DOI: 10.1016/j.jallcom.2004.07.078
Google Scholar
[19]
Lin, Y. C.; Wang, S. W.; Cho, Y. H.: Simple model of interfacial bonding strength in detachment of reinforcing phase from clad layer during run-in process, Materials & Design, 2009, 30 (9), pp.3388-3394.
DOI: 10.1016/j.matdes.2009.03.032
Google Scholar
[20]
Lin, Y. C.; Cho, Y. H.: Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis, Surface & Coatings Technology, 2008, 202 (19), pp.4666-4672.
DOI: 10.1016/j.surfcoat.2008.03.033
Google Scholar
[21]
Fernandez, E.; Cadenas, M.; Gonzalez, R.; Navas, C.; Fernandez, R.; de Damborenea, J.: Wear behaviour of laser clad NiCrBSi coating, Wear, 2005, 259, pp.870-875.
DOI: 10.1016/j.wear.2005.02.063
Google Scholar
[22]
Li, Q.; Song, G. M.; Zhang, Y. Z.; Lei, T. C.; Chen, W. Z.: Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC, Wear, 2003, 254 (3-4), pp.222-229.
DOI: 10.1016/s0043-1648(03)00007-3
Google Scholar
[23]
Dehm, G.; Medres, B.; Shepeleva, L.; Scheu, C.; Bamberger, M.; Mordike, B. L.; Mordike, S.; Ryk, G.; Halperin, G.; Etsion, I.: Microstructure and tribological properties of Ni-based claddings on Cu substrates, Wear, 1999, 225, pp.18-26.
DOI: 10.1016/s0043-1648(98)00347-0
Google Scholar