A Comparative Study of the Tribological Behavior of Tin Powder Clad on the JIS SKD11 Tool Steel with the GTAW Method

Article Preview

Abstract:

This work focused on the wear performance of the clad layers which were formed with cladding titanium nitrides (TiN) powder on the JIS SKD11 tool steel by the gas tungsten arc welding (GTAW) method. A rotating type tribometer was used to evaluate the wear behavior of the clad specimens under different sliding conditions. Furthermore, a nanoindenter was used to measure the hardness and elastic modulus of the reinforcements. According to the wear test results, the wear performance of the specimens cladded with TiN powder was better than that of the JIS SKD11 tool steel specimens. During dry sliding wear test, the clad layers exhibited a strong wear resistance because they contained the hard TiN reinforcements. Therefore, the wear performance of the clad layers was substantially better than that of the SKD11 specimens under all the test conditions in this study. In addition, produced oxide films might influence the wear behavior of different specimens during the wear testing, and oxidation wear would even dominate the wear behavior of the clad layers under some conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

365-376

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peng, D. X.: Optimization of Welding Parameters on Wear Performance of Cladded Layer with TiC Ceramic via a Taguchi Approach, Tribology Transactions, 2012, 55 (1), pp.122-129.

DOI: 10.1080/10402004.2011.636172

Google Scholar

[2] Herbst, S.; Williams, S.; Ganguly, S.: A Feasibility Study on Manufacturing of Functionally Graded Structures Using SiC Ceramic Powder in a Steel-Based Matrix by Gas Tungsten Arc Welding (GTAW), Steel Research International, 2012, 83 (6), pp.546-553.

DOI: 10.1002/srin.201100271

Google Scholar

[3] Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A. B.: Modelling of gas-metal arc welding taking into account metal vapour, Journal of Physics D-Applied Physics, 2010, 43 (43), 434008.

DOI: 10.1088/0022-3727/43/43/434008

Google Scholar

[4] Lin, Y. C.; Wang, S. W.: Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International, 2003, 36 (1), pp.1-9.

DOI: 10.1016/s0301-679x(02)00094-4

Google Scholar

[5] Arenas, M. F.; Acoff, V. L.: Analysis of gamma titanium aluminide welds produced by gas tungsten arc welding, Welding Journal, 2003, 82 (5), pp. 110s-115s.

DOI: 10.1515/htmp.2004.23.1.25

Google Scholar

[6] Chen, J. H.; Hsieh, C. C.; Hua, P. S.; Chang, C. M.; Lin, C. M.; Wu, P. T. Y.; Wu, W. T.: Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW), Metals and Materials International, 2013, 19 (1), pp.93-98.

DOI: 10.1007/s12540-013-1015-4

Google Scholar

[7] Lin, Y. C.; Chang, K. Y.: Elucidating the microstructure and erosive wear of ceramic powder alloying on AISI 1050 steel, Surface & Coatings Technology, 2012, 207, pp.493-502.

DOI: 10.1016/j.surfcoat.2012.07.053

Google Scholar

[8] Lin, Y. C.; Lin, Y. C.; Chen, Y. C.: Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder, Materials & Design, 2012, 36, pp.584-589.

DOI: 10.1016/j.matdes.2011.12.007

Google Scholar

[9] Wang, Z.; Zheng, W.; Zhou, X.: Microstructure and performance of in-situ synthesis TiN particle reinforced Ni-matrix composite coating, pp.

Google Scholar

[10] Mohan, L.; Anandan, C.: Effect of gas composition on corrosion behavior and growth of apatite on plasma nitrided titanium alloy Beta-21S, Applied Surface Science, 2013, 268, pp.288-296.

DOI: 10.1016/j.apsusc.2012.12.080

Google Scholar

[11] Zhao, L. D.; Lugscheider, E.: Reactive plasma spraying of TiAl6V4 alloy, Wear, 2002, 253, (11-12), pp.1214-1218.

DOI: 10.1016/s0043-1648(02)00246-6

Google Scholar

[12] Adjaottor, A. A.; Meletis, E. I.; Logothetidis, S.; Alexandrou, I.; Kokkou, S.: Effect of substrate bias on sputter-deposited TiCx, TiNy and TiCxNy thin films, Surface & Coatings Technology, 1995, 76 (1-3), pp.142-148.

DOI: 10.1016/0257-8972(95)02594-4

Google Scholar

[13] Man, H. C.; Zhang, S.; Cheng, F. T.; Guo, X.: In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding, Surface & Coatings Technology, 2006, 200 (16-17), pp.4961-4966.

DOI: 10.1016/j.surfcoat.2005.05.017

Google Scholar

[14] Cheng, B. W.; Chua, C. L.; Yang, Z. H.; Teepe, M.; Knollenberg, C.; Strittmatter, A.; Johnson, N.: Nitride Laser Diodes With Nonepitaxial Cladding Layers, Ieee Photonics Technology Letters, 2010, 22 (5), pp.329-331.

DOI: 10.1109/lpt.2009.2039564

Google Scholar

[15] Wu, Q. L.; Li, W. G.: The Microstructure and Wear Properties of Laser-Clad WC-Cr3C2 Cermet Coating on Steel Substrate, Materials Transactions, 2011, 52 (3), pp.560-563.

DOI: 10.2320/matertrans.m2010410

Google Scholar

[16] Anal, A.; Bandyopadhyay, T. K.; Das, K.: Synthesis and characterization of TiB2-reinforced iron-based composites, Journal of Materials Processing Technology, 2006, 172 (1), pp.70-76.

DOI: 10.1016/j.jmatprotec.2005.09.011

Google Scholar

[17] Du, B. S.; Zou, Z. D.; Wang, X. H.; Qu, S. Y.: In situ synthesis of TiB2/Fe composite coating by laser cladding, Materials Letters, 2008, 62 (4-5), pp.689-691.

DOI: 10.1016/j.matlet.2007.06.036

Google Scholar

[18] Liu, S.; Zhang, W. P.: Research on microstructure of in situ synthesized TiB2/Ni metal-ceramics composite coating, Journal of Alloys and Compounds, 2005, 391 (1-2), pp.146-150.

DOI: 10.1016/j.jallcom.2004.07.078

Google Scholar

[19] Lin, Y. C.; Wang, S. W.; Cho, Y. H.: Simple model of interfacial bonding strength in detachment of reinforcing phase from clad layer during run-in process, Materials & Design, 2009, 30 (9), pp.3388-3394.

DOI: 10.1016/j.matdes.2009.03.032

Google Scholar

[20] Lin, Y. C.; Cho, Y. H.: Elucidating the microstructure and wear behavior for multicomponent alloy clad layers by in situ synthesis, Surface & Coatings Technology, 2008, 202 (19), pp.4666-4672.

DOI: 10.1016/j.surfcoat.2008.03.033

Google Scholar

[21] Fernandez, E.; Cadenas, M.; Gonzalez, R.; Navas, C.; Fernandez, R.; de Damborenea, J.: Wear behaviour of laser clad NiCrBSi coating, Wear, 2005, 259, pp.870-875.

DOI: 10.1016/j.wear.2005.02.063

Google Scholar

[22] Li, Q.; Song, G. M.; Zhang, Y. Z.; Lei, T. C.; Chen, W. Z.: Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC, Wear, 2003, 254 (3-4), pp.222-229.

DOI: 10.1016/s0043-1648(03)00007-3

Google Scholar

[23] Dehm, G.; Medres, B.; Shepeleva, L.; Scheu, C.; Bamberger, M.; Mordike, B. L.; Mordike, S.; Ryk, G.; Halperin, G.; Etsion, I.: Microstructure and tribological properties of Ni-based claddings on Cu substrates, Wear, 1999, 225, pp.18-26.

DOI: 10.1016/s0043-1648(98)00347-0

Google Scholar