Numerical Hybrid Fluid Structure Coupling: Application to Mixed Lubrication in Metal Forming

Article Preview

Abstract:

The present paper deals with a sequential fluid structure coupling approach in order to solution the roughness prediction. The cold rolling model involves the strip with its asperities, the lubricant and the working roll. The strip asperities are modeled in 2D (trapezoidal shape) forming valleys and plateaus. Fluid flow rate between each valley full of lubricant is solved using local Couette's equation. Thus, the volume of lubricant trapped and its pressure are updated on the cold rolling model. During computations, the asperity is deformed from the entry to the exit to obtain its final shape. Global parameters such as front, back tensions, speeds are taken into account but also rheological (fluid, solid) and tribological behaviours.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

377-385

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Schey, Tribology in Metalworking: Friction, Lubrication and Wear, Asm Intl, Metals Park, Ohio, (1983).

Google Scholar

[2] R. Ahmed, M. P. F. Sutcliffe, Identification of surface features on cold-rolled stainless steel strip, Wear 244 (1-2) (2000) 60–70.

DOI: 10.1016/s0043-1648(00)00442-7

Google Scholar

[3] J. G. Lenard, Metal Forming Science and Practice: A State-of-the-Art Volume in Honour of Professor J.A. Schey's 80th Birthday, elsevier science, (2002).

Google Scholar

[4] J. I. Bech, N. Bay, M. Eriksen, Entrapment and escape of liquid lubricant in metal forming, Wear 232 (2) (1999) 134–139.

DOI: 10.1016/s0043-1648(99)00136-2

Google Scholar

[5] I. Shimizu, J. L. Andreasen, J. I. Bech, N. Bay, Influence of Workpiece Surface Topography on the Mechanisms of Liquid Lubrication in Strip Drawing, Journal of Tribology 123 (2) (2001) 290.

DOI: 10.1115/1.1308017

Google Scholar

[6] C. Sorensen, B. J, J. Andreasen, N. Bay, U. Engel, T. Neudecker, A Basic Study of the Influence of Surface Topography on Mechanisms of Liquid Lubrication in Metal Forming, CIRP Annals - Manufacturing Technology 48 (1) (1999) 203–208.

DOI: 10.1016/s0007-8506(07)63166-7

Google Scholar

[7] A. Wihlborg, Steel sheet surface topography and its influence on friction in a bending under tension friction test, International Journal of Machine Tools and Manufacture 41 (13-14) (2001) 1953–(1959).

DOI: 10.1016/s0890-6955(01)00060-8

Google Scholar

[8] A. Stephany, J. P. Ponthot, Improvement of an Iterative and Staggered Approach for a Model of Mixed-Lubrication in Cold Rolling, AIP Conference Proceedings 712 (1) (2004) 406–411.

DOI: 10.1063/1.1766558

Google Scholar

[9] M. P. F. Sutcliffe, H. R. Le, R. Ahmed, Modeling of Micro-Pit Evolution in Rolling or Strip-Drawing, Journal of Tribology 123 (4) (2001) 791.

DOI: 10.1115/1.1352741

Google Scholar

[10] P. Montmitonnet, La plasto-hydrodynamique (PHD) application de la théeorie de la lubrification aux procédés de mise en forme des métaux, Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2 (5) (2001) 729–737.

DOI: 10.1016/s1296-2147(01)01215-x

Google Scholar

[11] M. Saniei, M. Salimi, Development of a mixed film lubrication model in cold rolling, Journal of Materials Processing Technology 177 (1-3) (2006) 575–581.

DOI: 10.1016/j.jmatprotec.2006.04.049

Google Scholar

[12] H. Saito, M. Masuda, Modeling of blast process using indenting method, Precision engineering 28 (October 2003) (2004) 369–377.

DOI: 10.1016/j.precisioneng.2003.11.006

Google Scholar

[13] E. d. S. Neto, P. D. Periæ, P. D. Owen, Computational Methods for Plasticity: Theory and Applications, Wiley, (2009).

Google Scholar

[14] Abaqus, Theory Manual (2008).

Google Scholar

[15] G. Stachowiak, A. Batchelor, Engineering tribology, Butterworth-Heinemann, (2005).

Google Scholar

[16] A. K. Mohanty, Fluid Mechanics, PHI Learning Pvt. Ltd., (2004).

Google Scholar

[17] S. Kucharski, G. Starzyski, A. Bartoszewicz, Prediction of surface roughness in metal forming with liquid lubricant, Tribology International 43 (1-2) (2010) 29–39.

DOI: 10.1016/j.triboint.2009.04.028

Google Scholar

[18] S. Huart, M. Dubar, R. Deltombe, A. Dubois, L. Dubar, Asperity deformation, lubricant trapping and iron fines formation mechanism in cold rolling processes, Wear 257 (5-6) (2004) 471–480.

DOI: 10.1016/j.wear.2004.01.012

Google Scholar

[19] X. Roizard, F. Raharijaona, Influence of sliding direction and sliding speed on the micro- hydrodynamic lubrication component of aluminium mill-finish sheets, Tribology International 32 (1999) (2000) 739–747.

DOI: 10.1016/s0301-679x(00)00008-6

Google Scholar

[20] C. Hubert,N. Bay, P. Christiansen, R. Deltombe, L. Dubar, M. Dubar, and A Dubois. Numerical Simulation of Lubrication Mechanisms at Mesoscopic Scale. CIRP Annals - Manufacturing Technology 61 (2012) 271–274.

DOI: 10.1016/j.cirp.2012.03.126

Google Scholar