Affecting the Life Time of Roller Bearings by an Optimal Surface Integrity Design after Hard Turning and Deep Rolling

Article Preview

Abstract:

The life time of roller bearings can be increased by inducing compressive residual stresses in the subsurface region of the raceway. These stresses can be induced by overloading in the first numbers of revolution. It would be much more useful to create the surface integrity within the manufacturing process. In this paper a method is presented to improve the process chain from grinding and honing to hard turning and deep rolling. As a result the surface finish is comparable to ground bearings. Due to the deep rolling process the maximum compressive stresses can be induced to higher values and depth. For the evaluation of the surface roughness in hard turning process and the maximum compressive stresses in deep rolling empirical models based on D-optimal experimental design are used.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

425-434

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Neubauer, T.; Poll, G.; Denkena, B.; Maiß, O.: Fatigue life extension of rolling element bearings by residual stresses induced through surface machining, World Tribology Congress, Torino, (2013).

Google Scholar

[2] Gleß, M.: Wälzkontaktermüdung bei Mischreibung, Dr. -Ing. Thesis, Otto-von-Guericke-Universität Magdeburg, (2009).

Google Scholar

[3] Voskamp, A.: Microstructural changes during rolling contact fatigue – metal fatigue in the subsurface region of deep groove ball bearing inner rings, PhD Thesis, Technische Universität Delft, (1996).

Google Scholar

[4] Brandt, D.: Randzonenbeeinflussung beim Hartdrehen, Dr. -Ing. Dissertation, Universität Hannover, (1995).

Google Scholar

[5] Müller, C.: Prozessgrößen und Randzoneneigenschaften beim Drehen gehärteter Stähle, Dr. -Ing. Dissertation, Leibniz Universität Hannover, (2008).

Google Scholar

[6] Matsumoto, Y.; Haschimoto, F.; Lahoti, G.: Surface integritiy generated by precision hard truning, Annals of the CIRP, Vol. 48/1, 1999, pp.59-62.

DOI: 10.1016/s0007-8506(07)63131-x

Google Scholar

[7] Abrao, A.M.; Breidenstein, B.; Mörke, T.; Denkena, B.: Surface Characterization of components subjected to deep rolling for cyclic loading applications, New Production Technologies in Aerospace Industry, Proceedings of the 4th Machining Innovations Conference, Hannover, (2013).

DOI: 10.1007/978-3-319-01964-2_7

Google Scholar

[8] Röttger, K.: Walzen hartgedrehter Oberflächen, Dr. -Ing. Dissertation, RWTH Aachen, (2003).

Google Scholar

[9] Ioannides, E.; Harris, T.A.: A New Fatigue Life Model for Rolling Bearings. Journal of Tribology Vol. 107, (1985).

DOI: 10.1115/1.3261081

Google Scholar

[10] Ioannides, E., Bergling, G., Gabelli, A.: An analytical formulation for the life of rolling bearings, Acta Polytechnica Scandinavica, Mechanical engineering series No. 137, (1999).

Google Scholar

[11] Albrecht, P.: New Developments in the theory of metal-cutting process – part I. The ploughing process in metal cutting, ASME Transactions Journal of Engineering for Industry, Vol Series B, 82, 1960, pp.348-358.

DOI: 10.1115/1.3664242

Google Scholar

[12] Leon, L.R.: Residual stress and part distortion in milled aerospace aluminium, Dr. -Ing. Dissertation, Leibniz Universität Hannover, (2010).

Google Scholar