Improved Wear Resistance of AISI 304L by Cladding Boride Layers Using the GTAW Process

Article Preview

Abstract:

The austenitic stainless steel (SS) of AISI 304L is widely used in industrial applications because of its superior anti-corrosion resistance. However, the material suffers from a lower hardness, thus reducing wear resistance. In this study, AISI 304L was clad with tungsten boride (WB) ceramic powder using the gas tungsten arc welding (GTAW) process to increase surface hardness and improve wear resistance. The microstructure of the cladding layer was investigated using an X-ray diffractometer (XRD), an electron probe microanalyzer (EPMA), and a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS). The hardness distribution of the cladding layer was measured using a micro-Vickers hardness tester. Wear tests were conducted with a pin-on-disc tribometer at the ambient condition, while simultaneously monitoring friction coefficient variation. Surface frictional temperature was recorded with K-type thermocouples during wear tests. The worn morphology of the tested specimens was observed by SEM to identify wear characteristics. The results show that WB cladding successfully increased the hardness and the wear resistance of AISI 304L. Keywords: GTAW, WB, wear resistance, microstructure

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

386-396

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tassin,C.; Laroudie,F.; Pons,M.; Lelait, L.: Improvement of the Wear Resistance of 316L Stainless Steel by Laser Surface Alloying, Surface Coatings and Technology, 1996, 80 (1-2), pp.207-210.

DOI: 10.1016/0257-8972(95)02713-0

Google Scholar

[2] Glaeser W.A.: Materials for Tribology, Tribology Series, 20, Elsevier, (1992).

Google Scholar

[3] Mandl,S.; Gunzel, R.; Richiter,E.; Moller, W.: Nitriding of Austenitic Stainless Steels Using Plasma Immersion Ion Implantation, Surface Coatings and Technology, 1998, 100-101, pp.372-376.

DOI: 10.1016/s0257-8972(97)00651-8

Google Scholar

[4] Sun, Y.; Bell, T.: Sliding Wear Characteristics of Low Temperature Plasma Nitrided 316 Austenitic Stainless Steel, Wear, 1998, 218 (1), pp.34-42.

DOI: 10.1016/s0043-1648(98)00199-9

Google Scholar

[5] Jeong B.Y.; Kim, M.H.: Effects of Pulse Frequency and Temperature on the Nitride Layer and Surface Characteristics of Plasma NitridedStainless Steel, Surface Coatings and Technology, 2001, 137 (2-3), pp.249-254.

DOI: 10.1016/s0257-8972(00)01095-1

Google Scholar

[6] Tian, X.; Fu, R. K. Y.; Wang, L.; Chu, P. K.: Oxygen-induced Nickel Segregation in Nitrogen Plasma Implanted AISI 304 Stainless Steel. Materials Science and Engineering: A, 2001, 316 (1-2), pp.200-204.

DOI: 10.1016/s0921-5093(01)01245-x

Google Scholar

[7] Singh,V.; Marchev,K.; Cooper C.V.; Meletis, E.I.: Intensified Plasma-Assisted Nitriding of AISI 316L Stainless Steel, Surface Coatings and Technology, 2002, 160 (2-3), pp.249-258.

DOI: 10.1016/s0257-8972(02)00403-6

Google Scholar

[8] Liang, W.: Surface Modification of AISI 304 Austenitic Stainless Steel by Plasma Nitriding, Applied Surface Science, 2003, 211 (1-4), pp.308-314.

DOI: 10.1016/s0169-4332(03)00260-5

Google Scholar

[9] Xia, Y.; Hu, J.; Zhou, F.; Lin, Y.; Qiao, Y.; Xu, T.: Friction and Wear Behavior of Plasma Nitrided 1Cr18Ni9Ti Austenitic Stainless Steel under Lubrication Condition, Materials Science and Engineering: A, 2005, 402 (1-2), pp.135-141.

DOI: 10.1016/j.msea.2005.04.012

Google Scholar

[10] Li,G. J.; Peng, Q.; Li, C.; Wang,Y.; Gao,J.; Chen, S. Y.; Wang,J.; Shen, B. L.: Effect of DC Plasma Nitriding Temperature on Microstructure and Dry-Sliding Wear Properties of 316L Stainless Steel, Surface Coatings and Technology, 2008, 202 (12), pp.2749-2754.

DOI: 10.1016/j.surfcoat.2007.10.002

Google Scholar

[11] Majumdar, J. D.; Kumar, A.; Li, L.: Direct Laser Cladding of SiCDispersed AISI 316L Stainless Steel, Tribology International, 2009, 42 (5), pp.750-753.

DOI: 10.1016/j.triboint.2008.10.016

Google Scholar

[12] Xu, P.; Lin, C. H.; Zhou, C. Y.; Yi, X. P.: Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3Composite Coatings, In Press.

DOI: 10.1016/j.surfcoat.2013.10.028

Google Scholar

[13] Sexton,L.; Lavin,S.; Byrne,G.; Kennedy,A.: Laser cladding of aerospace materials, Journal of Materials Processing Technology, 2002, 122 (1), pp.63-68.

DOI: 10.1016/s0924-0136(01)01121-9

Google Scholar

[14] Cheng, F. T.; Lo, K. H.; Man, H. C.: A Preliminary Study of Laser Cladding of AISI 316 Stainless Steel Using Preplaced NiTiWire, Materials Science and Engineering: A, 2004, 380 (1-2), pp.20-29.

DOI: 10.1016/j.msea.2004.01.056

Google Scholar

[15] Chiu, K. Y.; Cheng, F. T.; Man, H. C.: Laser Cladding of Austenitic Stainless Steel Using NiTiStrips for Resisting Cavitation Erosion, Materials Science and Engineering: A, 2005, 402 (1-2), pp.126-134.

DOI: 10.1016/j.msea.2005.04.013

Google Scholar

[16] Cai, L.; Zhang, Y.; Shi, L.: Microstructure and Formation Mechanism of Titanium Matrix Composites Coating on Ti-6Al-4V by Laser Cladding, Rare Metals, 2007, 26 (4), pp.342-346.

DOI: 10.1016/s1001-0521(07)60226-5

Google Scholar

[17] Lin, Y. C.; Chen,H. M.; Chen, Y. C.: Analysis of Microstructure and Wear Performance of SiCClad Layer on SKD61 Die Steel after Gas Tungsten Arc Welding, Materials and Design, 2013, 47, pp.828-835.

DOI: 10.1016/j.matdes.2013.01.007

Google Scholar