Multiscale Modeling of Joining Processes under Consideration of the Thermo-Mechano-Chemical Behaviour in the Interface

Article Preview

Abstract:

In the last decades, manufacturing of layered composite materials has become an interesting topic in industrial development. Joining properties of adhesively bonded materials are characterized by a complex interaction of plastic deformation, thermo-mechano-chemical coupling effects, adhesion and diffusion. Additionally, the interactions between the microstructures involved in the process have to be taken into account. The design of new joining technologies requires a fundamental understanding of the mechanisms which is difficult to achieve by working solely experimentally. The present study therefore deals with modeling the essential effects characterizing joining. Additionally, special attention is paid to the experimental characterization of the involved materials at the macro and micro levels. The microstructure of materials (as e.g. AA1050, AA2024 and AA5754), which have a wide range of applications in engineering structures, is numerically and experimentally investigated. Moreover, a general cohesive zone element formulation in the framework of zero-thickness interface elements is developed. This enables the accurate and efficient modeling of the interface based on an interfacial traction-separation law.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

580-594

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Weddeling, M. Marr, A. Brosius, and A. E. Tekkaya, Integration von Umformen, Trennen und Fügen für die flexible Fertigung von leichten Tragwerkstrukturen, Fortschrittsbericht VDI, vol. 1, p.169 – 191, (2011).

Google Scholar

[2] S. Schäfer, S. Abedini, P. Groche, C. Ludwig, F. Bäcker, E. Abele, B. Jalizi, C. Müller, and V. Kaune, Joining techniques using the technology of the CRC 666, Bauingenieur, vol. 1, p.8 – 13, (2013).

Google Scholar

[3] R. Kebriaei, J. Frischkorn, S. Reese, T. Husmann, H. Meier, H. Moll, W. Theisen, Numerical modelling of powder metallurgical coatings on ring-shaped parts integrated with ring rolling, Journal of Materials Processing Technology, vol. 213, pp.2015-2032, (2013).

DOI: 10.1016/j.jmatprotec.2013.05.023

Google Scholar

[4] R. Kebriaei, J. Frischkorn, S. Reese, H. Moll, W. Theisen, T. Husmann, H. Meier, Coupled thermo-mechanical analysis of process-integrated powder coating by means of hot rolling, Key Engineering Materials, vol. 504-506, pp.193-198, (2012).

DOI: 10.4028/www.scientific.net/kem.504-506.193

Google Scholar

[5] K. I. Mori, N. Bay, L. Fratini, F. Micari, and A. E. Tekkaya, Joining by plastic deformation, CIRP Annals-Manufacturing Technology, vol. 62, p.673 – 694, (2013).

DOI: 10.1016/j.cirp.2013.05.004

Google Scholar

[6] N. Bay, Cold pressure welding - the mechanisms governing bonding, Journal of Engineering for Industry, vol. 101, p.121–127, (1979).

DOI: 10.1115/1.3439484

Google Scholar

[7] N. Bay, C. Clemensen, and O. Juelstorp, Bond strength in cold roll bonding, CIRP Annals – Manufacturing Technology, vol. 34, p.221–224, (1985).

DOI: 10.1016/s0007-8506(07)61760-0

Google Scholar

[8] R. Wirth, Focused ion beam (fib) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chemical Geology, vol. 261, p.217 – 229, (2009).

DOI: 10.1016/j.chemgeo.2008.05.019

Google Scholar

[9] H. -Y. Wu, S. Lee, and J. -Y. Wang, Solid-state bonding of iron-based alloys, steelbrass, and aluminum alloys, Journal of Materials Processing Technology, vol. 75, p.173 – 179, (1998).

DOI: 10.1016/s0924-0136(97)00323-3

Google Scholar

[10] I. Topic, H. Höppel, and M. Gken, Influence of rolling direction on strength and ductility of aluminium and aluminium alloys produced by accumulative roll bonding, Journal of Materials Science, vol. 43, p.7320 –7325, (2008).

DOI: 10.1007/s10853-008-2754-3

Google Scholar

[11] L. Chang, J. Cho, and S. Kang, Microstructure and mechanical properties of AM31 magnesium alloys processed by differential speed rolling, Journal of Materials Processing Technology, vol. 211, p.1527 – 1533, (2011).

DOI: 10.1016/j.jmatprotec.2011.04.003

Google Scholar

[12] S. Groh, E. Marin, M. Horstemeyer, and H. Zbib, Multiscale modeling of the plasticity in an aluminum single crystal, International Journal of Plasticity, vol. 25, p.1456 – 1473, (2009).

DOI: 10.1016/j.ijplas.2008.11.003

Google Scholar

[13] R. Phillips, Multiscale modeling in the mechanics of materials, Current Opinion in Solid State and Materials Science, vol. 3, p.526 – 532, (1998).

DOI: 10.1016/s1359-0286(98)80020-x

Google Scholar

[14] Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., and Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Materialia, vol. 58, p.1152 – 1211, (2010).

DOI: 10.1016/j.actamat.2009.10.058

Google Scholar

[15] Zaafarani, N., Raabe, D., Singh, R. N., Roters, F., and Zaefferer, S., Three-dimensional investigation of the texture and microstructure below a nanoindent in a cu single crystal using 3d EBSD and crystal plasticity finite element simulations, Acta Materialia, vol. 54, p.1863 – 1876, (2006).

DOI: 10.1016/j.actamat.2005.12.014

Google Scholar

[16] T. Barnes and I. Pashby, Joining techniques for aluminium spaceframes used in automobiles: Part {II} adhesive bonding and mechanical fasteners, Journal of Materials Processing Technology, vol. 99, p.72 – 79, (2000).

DOI: 10.1016/s0924-0136(99)00361-1

Google Scholar

[17] D. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol. 8, p.100 – 104, (1960).

DOI: 10.1016/0022-5096(60)90013-2

Google Scholar

[18] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, vol. 7, p.55–129, (1962).

DOI: 10.1016/s0065-2156(08)70121-2

Google Scholar

[19] V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal, Materials Science and Engineering: A, vol. 125, p.203 – 213, (1990).

DOI: 10.1016/0921-5093(90)90170-8

Google Scholar

[20] G. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, vol. 33, p.2899 – 2938, (1996).

DOI: 10.1016/0020-7683(95)00255-3

Google Scholar

[21] J. Chaboche, F. Feyel, and Y. Monerie, Interface debonding models: a viscous regularization with a limited rate dependency, International Journal of Solids and Structures, vol. 38, p.3127 – 3160, (2001).

DOI: 10.1016/s0020-7683(00)00053-6

Google Scholar

[22] A. Abdul-Baqi, P. Schreurs, and M. Geers, Fatigue damage modeling in solder interconnects using a cohesive zone approach, International Journal of Solids and Structures, vol. 42, p.927 – 942, (2005).

DOI: 10.1016/j.ijsolstr.2004.07.026

Google Scholar

[23] J. Mergheim and P. Steinmann, A geometrically nonlinear fe approach for the simulation of strong and weak discontinuities, Computer Methods in Applied Mechanics and Engineering, vol. 195, p.5037 – 5052, (2006).

DOI: 10.1016/j.cma.2005.05.057

Google Scholar

[24] T. C. Gasser and G. A. Holzapfel, Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3d problems with an application to the dissection analysis of soft biological tissues, Computer Methods in Applied Mechanics and Engineering, vol. 192, p.5059 – 5098, (2003).

DOI: 10.1016/j.cma.2003.06.001

Google Scholar

[25] P. Steinmann, On boundary potential energies in deformational and configurational mechanics, Journal of the Mechanics and Physics of Solids, vol. 56, p.772 – 800, (2008).

DOI: 10.1016/j.jmps.2007.07.001

Google Scholar

[26] J. Mosler and I. Scheider, A thermodynamically and variationally consistent class of damage-type cohesive models, Journal of the Mechanics and Physics of Solids, vol. 59, p.1647 – 1668, (2011).

DOI: 10.1016/j.jmps.2011.04.012

Google Scholar

[27] N. Konchakova, F. Balle, F. Barth, R. Mueller, D. Eifler, and P. Steinmann, Finite element analysis of an inelastic interface in ultrasonic welded metal/fibre-reinforced polymer joints, Computational Materials Science, vol. 50, p.184 – 190, (2010).

DOI: 10.1016/j.commatsci.2010.07.024

Google Scholar

[28] M. Paggi and P. Wriggers, A nonlocal cohesive zone model for finite thickness interfaces part i: Mathematical formulation and validation with molecular dynamics, Computational Materials Science, vol. 50, p.1625 – 1633, (2011).

DOI: 10.1016/j.commatsci.2010.12.024

Google Scholar

[29] A. Needleman, An analysis of decohesion along an imperfect interface, International Journal of Fracture, vol. 42, p.21–40, (1990).

DOI: 10.1007/978-94-017-2444-9_2

Google Scholar

[30] P. Wriggers, T. V. Van, and E. Stein, Finite element formulation of large deformation impact-contact problems with friction, Computers & Structures, vol. 37, p.319 – 331, (1990).

DOI: 10.1016/0045-7949(90)90324-u

Google Scholar

[31] R. Buczkowski and M. Kleiber, Elasto-plastic interface model for 3d-frictional orthotropic contact problems, , International Journal for Numerical Methods in Engineering, vol. 40, (1997).

DOI: 10.1002/(sici)1097-0207(19970228)40:4<599::aid-nme81>3.0.co;2-h

Google Scholar

[32] G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler, A numerical model for thermomechanical contact based on microscopic interface laws, Mechanics research communications, vol. 19 (3), p.173–182, (1992).

DOI: 10.1016/0093-6413(92)90062-f

Google Scholar