High Speed Joining by Laser Shock Forming

Article Preview

Abstract:

Due to an ongoing trend of function compaction miniaturization gets more and more important in industrial production. This makes hybrid joints under various conditions also in the micro range necessary. Existing joining solutions often have restrictions due to the principle of joining. Thus in this article a new high speed forming method for the micro range is shown, which is based on plastic deformation by laser induced shockwaves. First of all it is shown how metal sheet-sheet joints can be realized with this method. With the produced joints tensile tests are carried out, where a maximum shearing force of 26.7 N could be achieved. For a detailed process understanding, the near-field of the acting pressure of the TEA-CO2-laser induced shockwaves is measured. Moreover it is determined that the ignition point of the TEA-CO2-laser induced plasma out of aluminum is about 8 mm above the surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

597-606

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vollertsen, F., Biermann, D., Hansen, H.N., Jawahir, I.S., Kuzman, K. (2009) Size effects in manufacturing of metallic components, CIRP Annals - Manufacturing Technology, Vol. 58/2, pp.566-587.

DOI: 10.1016/j.cirp.2009.09.002

Google Scholar

[2] Sam, R., Yu, B., Chen, M., Eagleson, M. (2001) Advances in Laser Microwelding. In Proc. 20th International Congress on Applications of Lasers & Electro-Optics (ICALEO 2001). Chen, X. (Ed. ), 15. 10. - 18. 10. 2001, Jacksonville, FL, USA, F402.

DOI: 10.2351/1.5059785

Google Scholar

[3] Kamada, K., Nakamura, Y., Ohmori, A., Matsunawa, A., Katayama, S., Arata, Y. (1987).

Google Scholar

[4] Smolka, G., Gillner, A., Bosse, L., Lützeler, R. (2004) Micro Electron Beam Welding and Laser Machining - Potentials of Beam Welding Methods in the Micro-System Technology. Microsystem Technologies 10, pp.187-192.

DOI: 10.1007/s00542-003-0347-2

Google Scholar

[5] Neugebauer, R., Bouzakis, K. -D., Denkena, B., Klocke, F., Sterzing, A., Tekkaya, A.E., Wertheim, R. (2011) Velocity effects in metal forming and machining processes, CIRP Annals- Manufacturing Technology, Volume 60, Issue 2, pp.627-650.

DOI: 10.1016/j.cirp.2011.05.001

Google Scholar

[6] Zhang, Y., Babu, S., Daehn, G.S. (2010) Impact Welding in a Variety of Geometric Configurations. 4th International Conference on High Speed Forming, pp.97-107.

Google Scholar

[7] Patent (USA) (2011) Low-Temperature Spot Impact Welding Driven Without Contact, Pub. Nr. US 2011/0000953 A1.

Google Scholar

[8] Barchukov, A. I., Bunkin, F. V., Konov, V. I., Lyubin, A. A. (1974) Investigation of low-threshold gas breakdown near solid targets by CO2 laser radiation, Sov. Phys. -JETP, 39-3, pp.469-477.

Google Scholar

[9] O'Keefe, J.D., Skeen, C.H., York, C.M. (1973) Laser-induced deformation modes in thin metal targets, J. of App. Phys., 44-10, pp.4622-4626.

DOI: 10.1063/1.1662012

Google Scholar

[10] Walter, D., Michalowski, A., Gauch, R., Dausinger, F. (2007).

Google Scholar

[11] Vollertsen, F., Schulze Niehoff, H., Wielage, H. (2009) On the acting pressure in laser deep drawing, Production Engineering - Research and Development, 3/1, pp.1-8.

DOI: 10.1007/s11740-008-0135-z

Google Scholar

[12] Wielage, H. (2011) Hochgeschwindigkeitsumformen durch laserinduzierter Schockwellen, Dissertation, BIAS-Verlag, Bremen.

Google Scholar

[13] Wielage, H., Schulze Niehoff, H., Vollertsen, F. (2008).

Google Scholar

[14] Vollertsen, F., Blaurock, L., 2009. Einfluss der Umformgeschwindigkeit und der Messauflösung auf das Formänderungsverhalten in der Mikroblechumformung, 4. Kolloquium Mikroproduktion, Eds.: F. Vollertsen, S. Büttgenbach, O. Kraft, W. Michaeli, BIAS-Verlag Bremen, Bremen, pp.243-252.

Google Scholar

[15] Wielage, H., Vollertsen, F. (2011) Undercuts by Laser Shock Forming, The 14th International ESAFORM Conference on Material Forming, AIP Conf. Proc. 1353, American Institute of Physics, ISBN: 978-0-7354-0911-8, pp.1309-1312.

DOI: 10.1063/1.3589697

Google Scholar

[16] Hintz, G. (1997) Untersuchung der Druckerzeugung und der Strahl-Stoff-Wechselwirkung an einem Excimerlaser-System für die Schockbehandlung von Metallen, Dissertation, Universität Erlangen-Nürnberg.

Google Scholar

[17] Eisner, K. (1998) Prozeßtechnologische Grundlagen zur Schockverfestigung von metallischen Werkstoffen mit einem kommerziellen Excimerlaser, Dissertation, Universität Erlangen-Nürnberg.

Google Scholar

[18] Wielage, H., Vollertsen, F. (2012).

Google Scholar

[19] Vollertsen, F. (2013) Micro Metal Forming, Springer, Heidelberg, Germany, p.86.

Google Scholar