[1]
C. Blunk, Fertigungsgestaltung beim Clinchen mit Leistungsultraschall, AiF-Forschungsvorhaben 15541 /BR, (2010).
Google Scholar
[2]
K. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya, Joining by plastic deformation, CIRP Annuals – Manufacturing Technology, 62-2 (2013), 673-694.
DOI: 10.1016/j.cirp.2013.05.004
Google Scholar
[3]
Website: www. tox-de. com/de/produkte/verbindungstechnik. html, (2013).
Google Scholar
[4]
F. Blaha und B. Langenecker, Dehnung von Zink-Kristallen unter Ultraschalleinwirkung, (1955).
DOI: 10.1007/bf00623773
Google Scholar
[5]
Daud, Y; Lucas, M.; Huang, Z., Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, (2007).
DOI: 10.1016/j.jmatprotec.2006.12.032
Google Scholar
[6]
B. Langenecker, Effects of ultrasound on deformation characteristics of metals, IEEE Trans. Son. Ultrason. 13, 1966, p.1–8.
DOI: 10.1109/t-su.1966.29367
Google Scholar
[7]
C.E. Winsper, G.R. Dawson, D.H. Sansome, An introduction to the mechanics of oscillatory metalworking, Met. Mater., 1970, p.158–162.
Google Scholar
[8]
V.K. Astashev, Influence of high frequency vibration on plastic deformation processes, Soviet Mach. Sci. (Mashinovedenie) 2, 1983, 1–9.
Google Scholar
[9]
O. Izumi, K. Oyama, Y. Suzuki, Effects of superimposed ultrasonic vibration on compressive deformation of metals, Trans. Jpn. Inst. Met. 7, 1966, p.162–167.
DOI: 10.2320/matertrans1960.7.162
Google Scholar
[10]
O. Izumi, K. Oyama, Y. Suzuki, On the superimposing of ultrasonic vibration during compressive deformation of metals, Trans. Jpn. Inst. Met. 7, 1966, p.158–162.
DOI: 10.2320/matertrans1960.7.158
Google Scholar
[11]
Deutsches Reichspatent DRP-Nr. 98517.
Google Scholar
[12]
W. Lappe, Aufbau eines Systems zur Prozessüberwachung beim Stanznieten mit Halbhohlniet; Dissertation Universität Paderborn, (1996).
Google Scholar
[13]
K.W. Siu, A.H.W. Ngan, Oscillation-induced softening in copper and molybdenum from nano- to micro-length scales, Journal of Material Science and Engineering 572, pp.56-64.
DOI: 10.1016/j.msea.2013.02.037
Google Scholar
[14]
T. Olfermann, Lokale Konditionierung von presshartem Vergütungsstahl für das Hybridfügen von Mischbaustrukturen, 3. Fügetechnisches Gemeinschaftskolloqium, 10. 12. (2013).
Google Scholar
[15]
J. Osten et al., Softening of high strength steel for laser assisted clinching, Chair of Material Science, University of Rostock, Dec. 2013 submitted.
Google Scholar
[16]
A. Siddiq, E. Ghassemieh, Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects, Mechanics of Materials 40, (2008).
DOI: 10.1016/j.mechmat.2008.06.004
Google Scholar
[17]
A. Siddiq, E. Ghassemieh, Modelling and Characterization of Ultrasonic Consolidation Process on Aluminum Alloys, vol. 1079, p.125–132, San Fransisco, California, USA, 2008b, MRS Spring Meeting (2008).
DOI: 10.1557/proc-1079-n09-05
Google Scholar
[18]
A. Siddiq, E. Ghassemieh, Theoretical and finite element analysis of ultrasonic welding of aluminum alloy 3003, Journal of Manufacturing Science and Engineering 131, (2009).
DOI: 10.1115/1.3160583
Google Scholar
[19]
Y. Abe, K. Mori, T. Kato, Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow, Journal of Materials Processing Technology, 212-4 (2012), 884-889.
DOI: 10.1016/j.jmatprotec.2011.11.015
Google Scholar
[20]
M. Carboni et al., Fatigue behaviour of tensile-shear loaded clinched joints, Engineering Fracture Mechanics, (2005).
DOI: 10.1016/j.engfracmech.2005.04.004
Google Scholar