Determination of Friction Coefficients of Interstice of a Shaft-Hub-Connection Manufactured by Lateral Extrusion

Article Preview

Abstract:

A combination of several manufacturing process steps in a simultaneous manner allows savings in energy costs, reduced investment and economizing logistical efforts. In particular, this investigation deals with manufacturing and joining of a frictionally engaged shaft-hub-connection by lateral extrusion. One key challenge of such new process management is the prior layout of both optimal friction conditions during manufacturing process on the one hand and highly expected static friction interaction of joined components in order to transmit tangential and axial forces on the other hand. Therefore, cylindrical, thin-walled hubs have been manufactured and joined to shafts. Several parameters describing the tribological system between shaft and hub such as contact surface topographies and lubricant, have been varied within this study. By measuring the radial deformation of the hub, the contact pressure is determined and a normal force applied to the contact surface of shaft and hub is calculated. When separating hub and shaft in a destructive manner, an extensive axial tensile force is applied and measured. According to Coulomb's friction law, specific friction coefficients are calculated depending on manufacturing process parameters as mentioned above.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 966-967)

Pages:

659-670

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mori, K.; Bay, N.; Fratini, L.; Micari, F.; Tekkaya, A. E.: Joining by plastic deformation. CIRP Annals – Manufacturing Technology 2013, Volume 62, Issue 2, 2013, pages 673–694.

DOI: 10.1016/j.cirp.2013.05.004

Google Scholar

[2] Popov, V. L.: Contact Mechanics and Friction. 2009 Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-88836-9 e-ISBN 978-3-540-88837-6.

DOI: 10.1007/s11249-010-9673-6

Google Scholar

[3] Schätzle, W. : Querfließpressen eines Flansches oder Bundes an zylindrischen Vollkörpern aus Stahl (engl.: Lateral extrusion of a flange or collar to solid cylindrical bodies made of steel). Berichte aus dem Institut für Umformtechnik. Hrsg.: Prof. Dr. -Ing. K. Lange. Springer-Verlag, Dissertation (1987).

DOI: 10.1007/978-3-642-83129-4

Google Scholar

[4] Dörr, F. and Liewald, M.: Werkzeugkonzept und Verfahrensentwicklung zum Umformfügen einer Welle-Nabe-Verbindung durch Kalt-Quer-Fließpressen (engl.: Tool design and process development of a joining by forming process to manufacture a shaft-hub-connection by lateral extrusion). 5. VDI-Fachtagung: Welle-Nabe-Verbindungen: Gestaltung – Fertigung – Anwendungen; 25. – 26. September 2012, Nürtingen near Stuttgart.

DOI: 10.51202/9783181022870-189

Google Scholar

[5] Reinholz, R.: Tragfähigkeit von P3G-Welle-Nabe-Verbindungen bei Dauerschwing-beanspruchung (engl.: Load capacity of P3G shaft-hub-connections in fatigue loading), Dissertation, Fachbereich Maschinenbau und Produktionstechnik der Technischen Universität Berlin, ISBN 3-7983-1607-4, Berlin, (1994).

Google Scholar

[6] Deters, L.; Fischer, A.; Santer, E.; Stolz, U.: Tribologie: Verschleiß, Reibung (Definitionen, Begriffe, Prüfung) (engl.: Tribology: Wear, Friction (Definitions, Terms, Test). Gesellschaft für Tribologie, Arbeitsblatt 7, Ausgabe August (2002).

Google Scholar

[7] Dörr, F.; Funk, M.; Liewald, M.; Binz, H.: Numerical investigations on stress distribution and deformation of shaft-hub-connections manufactured by lateral extrusion. NUMIFORM 2013, Shenyang, China, 6. -10. Juli (2013).

DOI: 10.1063/1.4806843

Google Scholar

[8] Tibari, K.: Grundlagen des fluidbasierten Fügens hohlförmiger Rahmenstrukturen bei simultaner Formgebung (engl.: Fundamentals of fluid-based joining of hollow shaped frame structures by simultaneously forming). Dissertation, Berichte aus Produktion und Umformtechnik, PtU Darmstadt, Shaker Verlag Aachen, (2007).

Google Scholar

[9] Mandić, V. and Stefanović, M.: Friction Studies Utilizing the Ring Compression Test – Part 1. in: Tribology in industry, Volume 25, No. 1&2, 2003, pages 33-40.

Google Scholar

[10] Hagedorn, M.: Herstellung von Verbundbauteilen durch Einwalzen (engl.: Production of composite components by rolling). Dissertation, Universität Dortmund, Vulkan Verlag, 2005; ISBN: 3-8027-8730-7.

Google Scholar

[11] Winterfeld, J.: Einflüsse der Reibdauerbeanspruchung auf die Tragfähigkeit von P4C-Welle-Nabe-Verbindungen (engl.: Influences of the frictional stress on the load capacity of P4C-shaft-hub-connections). Dissertation, Technischen Universität Berlin, (2001).

DOI: 10.51202/9783181022870-65

Google Scholar

[12] Steinhäuser, S.; Wielage, D.; Dietrich, D.; Lampke, Th. and Gropp, H.: Phosphate coatings against frictional corrosion at shaft-hub press-fit connections and as transmission element for forces and moments in press-fit connections. in: Journal of Electrochemistry and Plating Technology, Eugen G. Leuze Verlag, 1/2008, pages 5-24.

Google Scholar