Synthesis and Photoluminescence Properties of Novel SnO2 Zigzag Nanoribbons

Article Preview

Abstract:

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

4213-4216

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tatsuyama, C.; Ichimura, S. Jpn: J. Appl. Phys. 1976, 15, 843-847.

Google Scholar

[2] Dieguez, A.; et al: Sens Actuators B 1996, 31, 1.

Google Scholar

[3] Ansari, S. G.; et al: Thin Solid Films 1997, 295, 271.

Google Scholar

[4] Nayral, C.; et al: Appl. Surf. Sci. 2000, 164, 219.

Google Scholar

[5] Matt Law, Hannes Kind, Benjamin Messer, et al: Angew. Chem. 2002, 114.

Google Scholar

[6] Wei Zhu, Wenzhong Wang, Haolan Xu, et al: Materials Chem. and Phys. 99 (2006) 127-130.

Google Scholar

[7] C. Ling, W. z. Qian, F. Wei: Journal of Crystal Growth 285 (2005) 49-53.

Google Scholar

[8] X.S. Peng L.D. Zhang G.W. Meng, et al: J. Appl. Phys. 93. 3. (2003) 1760-1763.

Google Scholar

[9] J.H. Duan, S.G. Yang, H.W. Liu etc: J. AM. CHEM. SOC. Vol. 127, (2005), pp.6180-6181.

Google Scholar

[10] T. Gao a,T.H. Wang: Materials Research Bulletin 43 (2008) 836-842.

Google Scholar

[11] X. Peng, L. Manna, W. Yang, et al: Nature 404(2000) 59-61.

Google Scholar

[12] Yufeng Hao, Guowen Meng, Changhui Ye, Lide Zhang: Appl. Phys. Lett. 87(2005) 033106.

Google Scholar

[13] Yufeng Hao, Guowen Meng, Zhong Lin Wang, et al: Nano Lett. 6 (2006) 1650-1655.

Google Scholar

[14] Y. Wang, J.Y. Lee, and T. C. Deivaraj: J. Phys. Chem. B 2004, 108, 13589-13593.

Google Scholar

[15] Q.R. Zhao,Y. Gao, X. Bai, C.Z. Wu, and Y. Xie: Eur. J. Inorg. Chem. 2006, 1643-1648.

Google Scholar

[16] X.H. Xiao G.W. Meng,Q. Wei, et al: Adv. Mater. 2005. 17. 1781-1784.

Google Scholar

[17] J.Q. Hu,Y. Bando,D. Golberg: Chem. Phys.L. 372 (2003) 758-762.

Google Scholar

[18] J.X. Wang, D.F. Liu, X.Q. Yan, et al: Solid State Commun. 130 (2004) 89.

Google Scholar

[19] Y. Lilach J.P. Zhang,M. Moskovits, and A. Kolmakov: Nano. Lett. 2005, 5, 2019-(2022).

Google Scholar

[20] B. Wang Y.H. Yang, C.X. Wang and G.W. Yang: Chem. Phys. L. 407 (2005) 347-353).

Google Scholar

[21] H.W. Kim N.H. Kin J.H. Myung and S.H. Shim: Phys. Stat. Sol. (a)202, No. 9, 1758-1762(2005).

Google Scholar