Preparation and Performance Characterization of “Turnjujube-Like” CdSe Nanofibers

Article Preview

Abstract:

It was reported for the first time that “Turnjujube-like” CdSe nanofibers have been assembled onto TiO2 surface by electrochemical method of cyclic voltammetry, using CdSO4•8H2O and SeO2 as raw material, can be used as a sensitizer of quantum dot-sensitized solar cell. CdSe morphology, structure characterization and optical properties are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and ultraviolt-visible spectroscopy (UV–Vis), respectively. The experimental results show that the prepared “Turnjujube–like” CdSe nanofibers are zinc blende CdSe with cubic crystal system, and it have excellent light absorption within the wavelength range of 300–800 nm. It has a potential for the construction of QD-sensitized solar energy cell.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 971-973)

Pages:

123-126

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos: Science Vol. 281 (1998), p. (2013).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[2] W. C. W. Chan and S. M. Nie: Science Vol. 281 (1998), p. (2016).

Google Scholar

[3] V. L. Colvin, M. C. Schlamp and A. P. Alivisatos: Nature Vol. 370 (1994), p.354.

Google Scholar

[4] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi: Science Vol. 290 (2000), p.314.

DOI: 10.1126/science.290.5490.314

Google Scholar

[5] N. C. Greenham, X. G. Peng, A. P. Alivisatos: Phys. Rev. B Vol. 54 (1996), p.17628.

Google Scholar

[6] Z. Deng, L. Cao, F. Tang, B. Zou, J. Phys. Chem. B 109 (2005), p.16671.

Google Scholar

[7] Z. Li, O. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, A. Mews, Adv. Funct. Mater. 19 (2009), p.3650.

DOI: 10.1002/adfm.200900569

Google Scholar

[8] M. B. Mohamed, D. Tonti, A. Al-Salman, A. Chemseddine, M. Chergui, J. Phys. Chem. B 109 (2005) 10533.

DOI: 10.1021/jp051123e

Google Scholar

[9] X.C. Jiang, B. Mayers, T. Herricks, Y.N. Xia, Adv. Mater. 15 (2003) 1740.

Google Scholar

[10] P. Němec, M. Simurda, L. Němec., D. Sprinzl, P. Formánek and P. Malý: J. Cryst. Growth Vol. 292 (2006), p.78.

DOI: 10.1016/j.jcrysgro.2006.03.057

Google Scholar

[11] J. H. Cheng, H. Y. Chao, Y. H. Chang, C. H. Hsu, C. L. Cheng, T. T. Chen, Y. F. Chen and M. W. Chu: Phys. E Vol. 40 (2008), p. (2000).

Google Scholar

[12] K. R. Murali, K. Srinivasan and D. C. Trivedi: Mater. Lett. Vol. 59 (2005), p.15.

Google Scholar

[13] D. Eich, D. Hubner, K. Ortner, L. Kilian, R. Becker, G. Landwehr, R. Fink and E. Umbach: Appl. Surf. Sci. Vol. 166 (2000), p.12.

Google Scholar

[14] A. A. Yadav, M. A. Barote and E. U. Masumdar: Mater. Chem. Phys. Vol. 121 (2010), p.53.

Google Scholar

[15] H. M. Pathan, B. R. Sankapal, J. D. Desai and C. D. Lokhande: Mater. Chem. Phys. Vol. 78 (2002), p.11.

Google Scholar

[16] M. S. Cheng, G. Z. Xiao and L. L. Hu: Materials Science and Engineering B Vol. 84 (2001), p.265.

Google Scholar

[17] S. N. Sarangi and S. N. Sahu: Physica E Vol. 23 (2004), p.159.

Google Scholar

[18] H. Zhang, X. Quan, S. Chen, H. Yu and N. Ma: Chem. Mater. Vol. 21 (2009), p.3090.

Google Scholar

[19] Y. Liang, B. Kong, A. Zhu, Z. Wang and Y. Tian: Chem. Commun. Vol. 48 (2012), p.245.

Google Scholar