[1]
Koizumi M. The concept of FGM. Ceram Trans Func Grad Mater 1993; 34: 3–10.
Google Scholar
[2]
A. Allahverdizadeh, M.H. Naei, M. Nikkhah Bahrami, Nonlinear free and forced vibration analysis of thin circular functionally graded plates, Journal of Sound and Vibration 310 (2008) 966–984.
DOI: 10.1016/j.jsv.2007.08.011
Google Scholar
[3]
G.N. Praveen, J.N. Reddy, Nonlinear transient thermo elastic analysis of functionally graded ceramic-metal plates, International Journal of Solids and Structures 35 (1998)4457–4476.
DOI: 10.1016/s0020-7683(97)00253-9
Google Scholar
[4]
J. Yang, H.S. Shen, Dynamic response of initially stressed functionally graded rectangular thin plates, Composite Structures 54 (2001) 497–508.
DOI: 10.1016/s0263-8223(01)00122-2
Google Scholar
[5]
J. Yang, H.S. Shen, Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments, Journal of Sound and Vibration 255 (2002) 579–602.
DOI: 10.1006/jsvi.2001.4161
Google Scholar
[6]
X. -L. Huang, H. -S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environment, International Journal of Solids and Structures 41 (9–10) (2004) 2403–2427.
DOI: 10.1016/j.ijsolstr.2003.11.012
Google Scholar
[7]
J.N. Reddy, Z.Q. Cheng, Frequency of functionally graded plates with three-dimensional asymptotic approach, Journal of Engineering Mechanics 129 (2003) 896–900.
DOI: 10.1061/(asce)0733-9399(2003)129:8(896)
Google Scholar
[8]
T. Prakash and Ganapathi, Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method. Composites Part B-Engineering, 37 (2006) 642-649.
DOI: 10.1016/j.compositesb.2006.03.005
Google Scholar
[9]
E. Efraim and M. Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, Journal of Sound and Vibration, 299 (2007) 720-738.
DOI: 10.1016/j.jsv.2006.06.068
Google Scholar
[10]
C. Y. Dong, Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-Ritz method, Materials and design, 29 (2008) 1518-1525.
DOI: 10.1016/j.matdes.2008.03.001
Google Scholar
[11]
P. Malekzadeh, M, M. Atashi and G. Karami, In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment, Journal of Sound and Vibration, 326 (2009) 837-851.
DOI: 10.1016/j.jsv.2009.05.016
Google Scholar
[12]
F. Ebrahimi, Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation, Journal of Mechanical Science and Technology, 23 (2009) 2107-2117.
DOI: 10.1007/s12206-009-0358-8
Google Scholar
[13]
Iman Davoodi Kermani, Mostafa Ghayour and Hamid Reza Mirdamadi, Free vibration analysis of multi-directional functionally graded circular and annular plates, Journal of Mechanical Science and Technology 26 (11)(2012) 3399-3410.
DOI: 10.1007/s12206-012-0860-2
Google Scholar
[14]
M. Haterbouch, R. Benamar, The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates, part I: Iterative and explicit analytical solution for non-linear transverse vibrations, Journal of Sound and Vibration 265 (2003).
DOI: 10.1016/s0022-460x(02)01443-8
Google Scholar
[15]
M. Haterbouch, R. Benamar, The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates, part II: Iterative and explicit analytical solution for non-linear coupled transverse and in-plane vibrations, Journal of Sound and Vibration 277 (2004).
DOI: 10.1016/j.jsv.2003.08.039
Google Scholar
[16]
Hui-Shen Shen, Functionally graded materials : Nonlinear analysis of plates and shells. Taylor & Francis Group, LLC. (2009).
Google Scholar
[17]
Y.S. Touloukian, Thermo Physical Properties of High-Temperature Solid Materials, Macmillan, New York, (1967).
Google Scholar
[18]
S. TIMOSHENKO, S. WEINSOWSKY-KRIEGER and R. M. JONES 1975 Mechanics of Composite Materials, 51. International Student Edition, McGraw-Hill Kogakusha, Ltd. Tokyo.
Google Scholar
[19]
R. Benamar, M.M.K. Bennouna, R.G. White, The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part II: Fully clamped rectangular isotropic plates, Journal of Sound and Vibration 164 (1991).
DOI: 10.1006/jsvi.1993.1215
Google Scholar
[20]
M. El Kadiri, R. Benamar, R.G. White, The non-linear free vibration of fully clamped rectangular plates: second non-linear mode for various plate aspect ratios, Journal of Sound and Vibration 228 (2) (1999) 333–358.
DOI: 10.1006/jsvi.1999.2410
Google Scholar
[21]
R. Benamar, M.M.K. Bennouna, R.G. White, The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part III: Fully clamped rectangular isotropic plates-measurements of the mode shape amplitude dependence and the spatial distribution of harmonic distortion, Journal of Sound and Vibration 175 (1994).
DOI: 10.1006/jsvi.1994.1335
Google Scholar
[22]
K. El Bikri, R. Benamar, M. Bennouna, Geometrically non-linear free vibrations of clamped simply supported rectangular plates. Part I: The effects of large vibration amplitudes on the fundamental mode shape, Computers and Structures 81 (2003).
DOI: 10.1016/s0045-7949(03)00152-4
Google Scholar
[23]
S. Sridhar, D.T. Mook, A.H. Nayfeh, Non-linear resonances in the forced responses of plates, Part I: Symmetric responses of circular plates, Journal of Sound and Vibration 41 (1975) 359–373.
DOI: 10.1016/s0022-460x(75)80182-9
Google Scholar
[24]
A.W. Leissa, Vibrations of Plates, NASA SP-160, U.S. Government Printing Office, Washington, DC, (1969).
Google Scholar
[25]
N. Yamaki, Influence of large amplitudes on flexural vibrations of elastic plates, Zeitschrift fur Angewandte Mathematik und Mechanik 41 (1961) 501–510.
DOI: 10.1002/zamm.19610411204
Google Scholar
[26]
J.L. Nowinski, Non-linear transverse vibrations of circular elastic plates built-in at the boundary, Proceedings of the Fourth US National Congress on Applied Mechanics, Vol. 1, 1962, p.325–334.
Google Scholar