[1]
M. Yamanoushi, M. Koizumi, T. Hiraii, I. Shiota (Eds. ), Proceedings of the First International Symposium on Functionally Gradient Materials, Japan, (1990).
Google Scholar
[2]
M. Koizumi, The concept of FGM, Ceramic Trans. Functionally Gradient Mater. 34 (1993) 3 10.
Google Scholar
[3]
Praveen GN, Reddy JN. Nonlinear transient thermoelastic analysis of functionlly graded ceramic–metal plates. Int J Solids Struct 1998; 35: 4457–71.
DOI: 10.1016/s0020-7683(97)00253-9
Google Scholar
[4]
Cheng ZQ, Batra RC. Deflection relationships between the homogeneous plate theory and different functionally graded plate theories. Arch Mech 2000; 52: 143–58.
Google Scholar
[5]
Reddy JN, Cheng ZQ. Three-dimensional thermo mechanical deformations of functionally graded rectangular plates. Eur J Mech Solids 2001; 20(5): 841–55.
DOI: 10.1016/s0997-7538(01)01174-3
Google Scholar
[6]
Yang J, Shen H-S. Non-linear analysis of FGM plates under transverse and in-plane loads. Int J Non-Linear Mech 2003; 38: 467–82.
DOI: 10.1016/s0020-7462(01)00070-1
Google Scholar
[7]
Qian LF, Batra RC, Chen LM. Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petrov–Galerkin method. Comput Mech 2004; 33: 263–73.
DOI: 10.1007/s00466-003-0527-z
Google Scholar
[8]
Croce LD, Venini P. Finite elements for functionally graded Reissner–Mindlin plates. Comput Methods Appl Mech Eng 2004; 193: 705– 25.
DOI: 10.1016/j.cma.2003.09.014
Google Scholar
[9]
Lanhe W. Thermal buckling of a simply supported moderately thick rectangular FGM plate. Compos Struct 2004; 64: 211–8.
DOI: 10.1016/j.compstruct.2003.08.004
Google Scholar
[10]
GhannadPour SAM, Alinia MM. Large deflection behavior of functionally graded plates under pressure loads. Compos Struct 2006; 75: 67– 71.
DOI: 10.1016/j.compstruct.2006.04.004
Google Scholar
[11]
Chung Y-L, Che W-T. The flexibility of functionally graded material plates subjected to uniform loads. J Mech Mater Struct 2007; 2(1): 63–86.
Google Scholar
[12]
J. Woo, S.A. Meguid, Nonlinear behaviour of functionally graded plates and shallow shells, International Journal of Solids and Structures 38 (2001)7409–7421.
DOI: 10.1016/s0020-7683(01)00048-8
Google Scholar
[13]
K. EL Bikri, R. Benamar and M. M Bennouna 2003 Computers & Structures, 81, 2029-2043. Geometrically non-linear free vibrations of clamped simply supported rectangular plates. Part I: the effects of large vibration amplitudes on the fundamental mode shape.
DOI: 10.1016/s0045-7949(03)00152-4
Google Scholar
[14]
R. Benamar, M.M.K. Bennouna and R. G. White. The effects of large vibration amplitudes on the fundamental mode shape of thin elastic structures, part II: Fully clamped rectangular isotropic plates. Journal of Sound and Vibration 164 (1993).
DOI: 10.1006/jsvi.1993.1215
Google Scholar
[15]
W. Han and M. Petyt. Geometrically non-linear vibration analysis of thin, rectangular plates using the hierarchical finite element method-I: The fundamental mode of isotropic plates. Computers & Structures, Vol 63 (1997), pp.295-308.
DOI: 10.1016/s0045-7949(96)00345-8
Google Scholar
[16]
X. -L. Huang, H. -S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environment, International Journal of Solids and Structures 41 (9–10) (2004) 2403–2427.
DOI: 10.1016/j.ijsolstr.2003.11.012
Google Scholar
[17]
M. EL Kadiri, R. Benamar and R. G. White 2002 Journal of Sound and Vibration. 249(2), 263-305. Improvement of the semi-analytical method, based on Hamilton's principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures. Part I : Application to C-C and SS-C beams.
DOI: 10.1006/jsvi.2001.3808
Google Scholar
[18]
R. Benamar, M.M.K. Bennouna and R. G. White 1991 Journal of Sound and Vibration 175, 377-395. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, part III: fully clamped rectangular isotropic plates – Measurements of the mode shape amplitude dependence and the spatial distribution of harmonic distortion.
DOI: 10.1006/jsvi.1994.1335
Google Scholar
[19]
M. EL Kadiri, R. Benamar and R. G. White 2003 Journal of Sound and Vibration 264, 1-35. Improvement of the semi-analytical method, based on Hamilton's principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures. Part III: steady-state periodic forced response of simply supported and fully clamped rectangular plates.
DOI: 10.1016/s0022-460x(02)01162-8
Google Scholar
[20]
M. Amabili and R. Garziera. A technique for the systematic choice of admissible functions in the Rayleigh-Ritz method. Journal of Sound and Vibration 224 (1999), pp.519-539.
DOI: 10.1006/jsvi.1999.2198
Google Scholar