[1]
Reddy JN, Praveen GN, Non-linear transient thermo elastic analysis of functionally graded ceramic-metal plate. Int J Solids Struct (1998): 35: 4457–76.
DOI: 10.1016/s0020-7683(97)00253-9
Google Scholar
[2]
Reddy JN, Wang CM, Kitipornchai S. Axisymmetric bending of functionally graded circular and annular plates. Eur J Mech A: Solids (1999); 18: 185–99.
DOI: 10.1016/s0997-7538(99)80011-4
Google Scholar
[3]
J.N. Reddy, Zhen-Qiang Cheng, Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal plan form, International Journal of Mechanical Sciences 44 (2002) 967–985.
DOI: 10.1016/s0020-7403(02)00023-1
Google Scholar
[4]
Reddy, J.N., Cheng, Z.Q., Frequency of functionally graded plates with three-dimensional asymptotic approach, J. Eng. Mech., Vol. 129, (2003), 896–900.
DOI: 10.1061/(asce)0733-9399(2003)129:8(896)
Google Scholar
[5]
Ma LS, Wang TJ, Non-linear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int J Solids Struct 2003, 40: 3311–30.
DOI: 10.1016/s0020-7683(03)00118-5
Google Scholar
[6]
S. Kitipornchai, J. Yang, K.M. Liew, Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections, International Journal of Solids and Structures 41 (2004) 2235–2257.
DOI: 10.1016/j.ijsolstr.2003.12.019
Google Scholar
[7]
Senthil S. Vel, R.C. Batra, Three-dimensional exact solution for the vibration of functionally graded rectangular plates, Journal of Sound and Vibration 272 (2004) 703–730.
DOI: 10.1016/s0022-460x(03)00412-7
Google Scholar
[8]
W.Q. Chen, Kang Yong Lee, H.J. Ding, On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates, Journal of Sound and Vibration 279 (2005) 237–251.
DOI: 10.1016/j.jsv.2003.10.033
Google Scholar
[9]
Chen, C. -S, Nonlinear vibration of a shear deformable functionally graded plate, J. Compos. Struct., Vol. 68, (2005), 295–302.
DOI: 10.1016/j.compstruct.2004.03.022
Google Scholar
[10]
Chin-Ping Fung, Chun-Sheng Chen, Imperfection sensitivity in the nonlinear vibration of functionally graded plates, European Journal of Mechanics A: Solids 25 (2006) 425–436.
DOI: 10.1016/j.euromechsol.2006.01.003
Google Scholar
[11]
A.J.M. Ferreira, R.C. Batra, C.M.C. Roque, L.F. Qian, R.M.N. Jorge, Natural frequencies of functionally graded plates by a meshless method, Composite Structures 75 (2006) 593–600.
DOI: 10.1016/j.compstruct.2006.04.018
Google Scholar
[12]
J. Woo, S.A. Meguid, L.S. Ong, Nonlinear free vibration behavior of functionally graded plates, Journal of Sound and Vibration 289 (2006) 595–611.
DOI: 10.1016/j.jsv.2005.02.031
Google Scholar
[13]
Xiao-Lin Huang, Hui-Shen Shen, Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments, Journal of Sound and Vibration 289 (2006) 25–53.
DOI: 10.1016/j.jsv.2005.01.033
Google Scholar
[14]
T. Prakash, M. Ganapathi, Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method, Composites: Part B 37 (2006) 642–649.
DOI: 10.1016/j.compositesb.2006.03.005
Google Scholar
[15]
Rajesh K. Bhangale, N. Ganesan, Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method, Journal of Sound and Vibration 294 (2006) 1016–1038.
DOI: 10.1016/j.jsv.2005.12.030
Google Scholar
[16]
Li SR, Zhang JH, Zhao YG. Non-linear thermo mechanical post-buckling of circular FGM plate with geometric imperfection, Thin-Wall Struct (2007), 45: 528–36.
DOI: 10.1016/j.tws.2007.04.002
Google Scholar
[17]
Allahverdizadeh, A., Naei, M.H. and Nikkhah Bahrami, M., Nonlinear free and forced vibration analysis of thin circular functionally graded plates, Journal of Sound and Vibration, Vol. 310, (2007), 966–984.
DOI: 10.1016/j.jsv.2007.08.011
Google Scholar
[18]
Chun-Sheng Chen, An-Hung Tan, Imperfection sensitivity in the nonlinear vibration of initially stresses functionally graded plates, Composite Structures 78 (2007) 529–536.
DOI: 10.1016/j.compstruct.2005.11.014
Google Scholar
[19]
E. Efraim, M. Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates, Journal of Sound and Vibration 299 (2007) 720–738.
DOI: 10.1016/j.jsv.2006.06.068
Google Scholar
[20]
Lanhe Wu, Hongjun Wang, Daobin Wang, Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method, Composite Structures 77 (2007) 383–394.
DOI: 10.1016/j.compstruct.2005.07.011
Google Scholar
[21]
Hiroyuki Matsunaga, Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Composite Structures 82 (2008) 499–512.
DOI: 10.1016/j.compstruct.2007.01.030
Google Scholar
[22]
Amini, H., Rastgoo, A. and Soleimani, M., Stress analysis for thick annular FGM plate, J. of Solid Mechanics, Vol. 4, (2009), 328-342.
Google Scholar
[23]
Guojun Nie, Zheng Zhong. Dynamic analysis of multi-directional functionally graded annular plates, Applied Mathematical Modelling 34 (2010) 608–616.
DOI: 10.1016/j.apm.2009.06.009
Google Scholar
[24]
Benamar R. Non-linear dynamic behaviour of fully clamped beams and rectangular isotropic and laminated plates, PhD Thesis, University of Southampton, 1990. p.35–62.
Google Scholar
[25]
R. Benamar, M.M.K. Bennouna, R.G. White, The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part I: Simply supported and clamped-Clamped beams, Journal of Sound and vibration 149(1991).
DOI: 10.1016/0022-460x(91)90630-3
Google Scholar
[26]
R. Benamar, M.M.K. Bennouna, R.G. White, The effects of large vibration amplitudes on the mode shapes andnatural frequencies of thin elastic structures, part II: fully clamped rectangular isotropic plates, Journal of Sound and Vibration 164 (1991).
DOI: 10.1006/jsvi.1993.1215
Google Scholar
[27]
Harras B, Benamar R, White RG. Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates. J Sound Vib 2002; 4: 579–619.
DOI: 10.1006/jsvi.2001.3713
Google Scholar
[28]
El Kadiri M, Benamar R, White RG. Improvement of the semianalytical method, based on Hamilton's principle and spectral analysis, for determination of the geometrically non-linear free response of thin straight structures. Part I: Application to C–C and SS-C beams. J Sound Vib 2002; 249: 263–305.
DOI: 10.1006/jsvi.2001.3808
Google Scholar
[29]
EL Bikri K, Benamar R, Bennouna MM. Geometrically non-linear free vibrations of clamped simply supported rectangular plates. Part I: the effects of large vibration amplitudes on the fundamental mode shape. Comput Struct 2003; 81: 2029–43.
DOI: 10.1016/s0045-7949(03)00152-4
Google Scholar
[30]
M. Haterbouch, R. Benamar, The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates. Part I: iterative and explicit analytical solution for non-linear transverse vibrations, Journal of Sound and Vibration 265 (2003).
DOI: 10.1016/s0022-460x(02)01443-8
Google Scholar
[31]
S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, New York, (1959).
Google Scholar
[32]
C.Y. Chia, Non-Linear Analysis of Plates, McGraw-Hill, New York, (1980).
Google Scholar
[33]
Lewandowski R. Free vibration of structures with cubic nonlinearity- remarks on amplitude equation and Rayleigh quotient. Comput Meth Appl Mech Eng 2003; 192: 1681–709.
DOI: 10.1016/s0045-7825(03)00189-0
Google Scholar
[34]
Arthur W. Leissa, Vibration of Plates, NASA SP-160, National Aeronautics and Space Administration, Washington D.C., (1969).
DOI: 10.1177/058310247200401107
Google Scholar
[35]
M.J.D. Powell, A method for minimising a sum of squares of non-linear functions without calculating derivatives, Computer Journal 7 (1965) 303–307.
DOI: 10.1093/comjnl/7.4.303
Google Scholar