Structure, Dielectric Relaxor Behavior and Ferroelectric Properties of Sr1-xLaxBi2Nb2-x/5O9 Ferroelectric Ceramics

Article Preview

Abstract:

Ferroelectric ceramics, Sr1-xLaxBi2Nb2-x/5O9 (SLBNO), were prepared using the conventional solid-state reaction method. Effect of lanthanum substitution on dielectric and ferroelectric properties of SrBi2Nb2O9 (SBN) ceramics were investigated. X-ray diffraction analyses (XRD) revealed that all the specimens had a single phase with orthorhombic space group A21am. The maximum dielectric permittivity peak broadened gradually with the increase in lanthanum substitution indicated that the phase transition from normal ferroelectrics to relaxor ferroelectrics occurred in SLBNO ceramics. The modified Curie-Weiss (CW) law was used to describe the relaxor behavior of the SLBNO ceramics. The relaxation indication coefficient (γ) was estimated from a quadratic fit of modified CW law and was found to be 1.7 and 2.0 for the SLBN20 and SLBN30 specimens, respectively. Curie temperature (Tc) of the SBN ceramic was decreased gradually with the increase in lanthanum substitution. In addition, the ferroelectric properties of the SBN ceramic were enhanced significantly by the introduction of lanthanum ions and the maximum of remnant polarization (Pr) was found to be 4.35 μC/cm2 for the SLCB20 specimen. Nature of relaxor behavior of the SLBNO ceramic is attributed to the cationic disordering at nanoscale on A site by the introduction of lanthanum ions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-22

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Lettieri, M.A. Zurbuchen, Y. Jia, D. G. Schlom, S.K. Streiffer, M.E. Hawley, Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3, Appl. Phys. Lett. 76 (2000) 2937.

DOI: 10.1063/1.126522

Google Scholar

[2] R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Materials for high temperature acoustic and vibration sensors: A review, Appl. Acoust. 41 (1994) 299-324.

DOI: 10.1016/0003-682x(94)90091-4

Google Scholar

[3] H. Yan, H.T. Zhang, R. Ubic, M.J. Reece, J. Liu, Z.J. Shen, Z. Zhang, A Lead-Free High-Curie-Point Ferroelectric Ceramic, CaBi2Nb2O9, Adv. Mater. 17 (2005) 1261-1265.

DOI: 10.1002/adma.200401860

Google Scholar

[4] T. Takenaka, K. Sakata, Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb(1-x)(NaCe)x/2Bi4Ti4O15 solid solution, J. Appl. Phys. 55 (1984) 1092.

DOI: 10.1063/1.333198

Google Scholar

[5] E.C. Subbrarao, Crystal Chemistry of Mixed Bismuth Oxides with Layer-Type Structure, J. Am. Ceram. Soc. 45 (1962) 166-169.

Google Scholar

[6] R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Structure basis of ferroelectricity in the bismuth titanate family, Mater. Res. Bull. 6 (1971) 1029-1039.

DOI: 10.1016/0025-5408(71)90082-1

Google Scholar

[7] B. Jimenez, P. Duran-Martin, A. Castro, P. Millan, Obtention and characterization of modified Bi2SrNb2O9 Aurivillius-type ceramics, Ferroelectrics 186 (1996) 93-96.

DOI: 10.1080/00150199608218041

Google Scholar

[8] P. Duran-Martin, A. Castro, O. Millan, B Jimenez, Influence of Bi-site Substitution on the Ferroelectricity of the Aurivillius Compounds Bi2SrNb2O9, J. Mater. Res. 13 (1998) 2565-2571.

Google Scholar

[9] S.M. Huang, C.D. Feng, L.D. Chen, X.W. Wen, Dielectric properties of SrBi2-xPrxNb2O9 ceramics (x=0, 0. 04 and 0. 2), Solid State Comm. 133 (2005) 375-379.

DOI: 10.1016/j.ssc.2004.11.031

Google Scholar

[10] H. naceur, A. Megriche, M.E. Maaoui, Structure distortion and dielectric properties of Sr1-x(Na0. 5Bi0. 5)xBi2Nb2O9 (x=0. 0, 0. 2, 0. 5, 0. 8 and 1. 0), J. Alloys Compd. 546 (2013) 145-150.

DOI: 10.1016/j.jallcom.2012.08.101

Google Scholar

[11] Z.H. Peng, Q. Chen, J.G. Wu, X.H. Zhu, D.Q. Xiao, J.G. Zhu, Dielectric and piezoelectric properties of Sb5+ doped (NaBi)0. 38(LiCe)0. 05[]0. 14Bi2Nb2O9 ceramics, J. Alloys Compd. 509 (2011) 8483-8486.

DOI: 10.1016/j.jallcom.2011.06.024

Google Scholar

[12] Z.G. Gai, J.F. Wang, C.M. Wang, Effect of (Li, Ce) doping in Aurivillius phase material Na0. 25K0. 25Bi2. 5Nb2O9, Appl. Phys. Lett. 90 (2007) 052911.

DOI: 10.1063/1.2450669

Google Scholar

[13] J.J. Zhang, M.J. Chao, E.J. Liang, M.Y. Li, Synthesis and dielectric properties of textured SrBi2Nb2O9 ceramics via laser rapid solidification, J. Alloys Compd. 521 (2012) 150-154.

DOI: 10.1016/j.jallcom.2012.01.099

Google Scholar

[14] P.Y. Fang, H.Q. Fan, J. Li, F.J. Liang, Lanthanum induced larger polarization and dielectric relaxation in Aurivillius phase SrBi2-xLaxNb2O9 ferroelectric ceramics, J. Appl. Phys. 107 (2010) 064104.

DOI: 10.1063/1.3340981

Google Scholar

[15] Y. Yao, C. Song, P. Bao, D. Su, X. Lu, J. Zhu, Y. Wang, Doping effect on the dielectric property in bismuth titanate, J. Appl. Phys. 95 (2004) 3126.

DOI: 10.1063/1.1649456

Google Scholar

[16] B.H. Venkataraman, K.B.R. Varma, Frequency-dependent dielectric characteristics of ferroelectric SrBi2Nb2O9 ceramics, Solid State Ionics 167 (2004) 197-202.

DOI: 10.1016/j.ssi.2003.12.020

Google Scholar

[17] Y. Ding, J.S. Zhu, Y.N. Wang, Stacking faults and their effects on ferroelectric properties in strontium bismuth tantalate, J. Appl. Phys. 91 (2002) 2255.

DOI: 10.1063/1.1431428

Google Scholar

[18] B.J. Kalaiselvi, R. Sridarane, Ramaswamy Murugan, Dielectric properties of Sr0. 8Bi2. 2(V0. 2Nb0. 8)2O9 ceramic, Mater. Sci. Eng. B 127 (2006) 224-227.

DOI: 10.1016/j.mseb.2005.10.028

Google Scholar

[19] K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44 (1982) 55.

Google Scholar

[20] S.M. Ke, H.Q. Fan, H.T. Huang, H.L.W. Chan, S.H. Yu, Dielectric dispersion behavior of Ba(ZrxTi1-x)O3 solid solutions with a quasiferroelectric state, J. Appl. Phys. 104 (2008) 034108.

DOI: 10.1063/1.2964088

Google Scholar