Cr-Doping-Induced Ferromagnetism in CeO2-δ Nanopowders

Article Preview

Abstract:

The room-temperature ferromagnetism of Cr-doped cerium oxide (Ce0.96Cr0.04O) nanopowders synthesized using a sol-gel process is reported in this paper. XRD and Raman spectroscopy confirm that the Cr atoms successfully displaced some of the Ce atoms in the CeO2 lattice without forming any impure phases. The results also confirmed that all calcined samples exhibited a single-phase fluorite structure. The crystallite size (as confirmed by XRD) and the particle size (as confirmed by Raman spectroscopy) increased as the calcination temperature increased. Magnetic measurements indicated that the room-temperature ferromagnetism of the sample was sensitive to the calcination temperature. When the calcination temperature increased, the saturation magnetization decreased while the coercivity increased, which corresponds to less dense and larger particles. The calcined sample at 400°C exhibited superior magnetic properties with the highest saturation magnetization (Ms) of 2.5 × 10-2 emu/g (Hc ~ 1.27 kOe). The results of the Raman and X-ray photoelectron spectroscopies suggest that the nature of the observed room temperature ferromagnetism in the samples are likely a result of the oxygen vacancies induced by Cr-doping in CeO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-49

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles, Phys. Rev. B 72 (2005).

DOI: 10.1103/physrevb.72.075203

Google Scholar

[2] D.A.A. Santos, M.A. Macedo, Study of the magnetic and structural properties of Mn-, Fe-, and Co-doped ZnO powder, Physica B 407 (2012) 3229-3232.

DOI: 10.1016/j.physb.2011.12.073

Google Scholar

[3] N.S. Ferreira, L.G. Abraçado, M.A. Macêdo, Room-Temperature Ferromagnetism in Chemically Synthesized Ce0. 97Cr0. 03O2−δ Nanopowders, J. Supercond. Nov. Magn. 26 (2013) 2549-2552.

DOI: 10.1007/s10948-012-1567-4

Google Scholar

[4] P.C.A. Brito, D.A.A. Santos, J.G.S. Duque, M.A. Macedo, Structural and magnetic study of Fe-doped CeO2, Physica B 405 (2010) 1821-1825.

DOI: 10.1016/j.physb.2010.01.054

Google Scholar

[5] A. Bouaine, R.J. Green, S. Colis, P. Bazylewski, G.S. Chang, A. Moewes, E.Z. Kurmaev, A. Dinia, Appearance of Ferromagnetism in Co-Doped CeO2 Diluted Magnetic Semiconductors Prepared by Solid-State Reaction, J. Phys. Chem. C 115 (2011) 1556-1560.

DOI: 10.1021/jp1088096

Google Scholar

[6] D.Q. Gao, J. Zhang, G.J. Yang, J.L. Zhang, Z.H. Shi, J. Qi, Z.H. Zhang, D.S. Xue, Ferromagnetism in ZnO Nanoparticles Induced by Doping of a Nonmagnetic Element: Al, J. Phys. Chem. C 114 (2010) 13477-13481.

DOI: 10.1021/jp103458s

Google Scholar

[7] X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li, Z.G. Zou, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca(2+) doping, Nanotechnology 20 (2009).

DOI: 10.1088/0957-4484/20/11/115606

Google Scholar

[8] G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3-delta nanostructures, Phys. Rev. B 79 (2009).

DOI: 10.1103/physrevb.79.174406

Google Scholar

[9] J. Rodriguez-Carvajal, FullProf: A Rietveld refinement and pattern matching analysis program (Version: October 2013), in, Laboratoire Léon Brillouin (CEA-CNRS), France, (2013).

Google Scholar

[10] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall, New Jersey, USA, (2001).

Google Scholar

[11] J. Lu, Z.Z. Fang, Synthesis and characterization of nanoscaled cerium(IV) oxide via a solid-state mechanochemical method, J. Am. Ceram. Soc. 89 (2006) 842-847.

DOI: 10.1111/j.1551-2916.2005.00829.x

Google Scholar

[12] I. Kosacki, V. Petrovsky, H.U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films, J. Am. Ceram. Soc. 85 (2002) 2646-2650.

DOI: 10.1111/j.1151-2916.2002.tb00509.x

Google Scholar

[13] I.H. Campbell, P.M. Fauchet, The Effects of Microcrystal Size and Shape on the One Phonon Raman-Spectra of Crystalline Semiconductors, Solid State Comm. 58 (1986) 739-741.

DOI: 10.1016/0038-1098(86)90513-2

Google Scholar

[14] J.E. Spanier, R.D. Robinson, F. Zheng, S.W. Chan, I.P. Herman, Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering, Phys. Rev. B 64 (2001).

Google Scholar

[15] Z.D. Dohcevic-Mitrovic, M.J. Scepanovic, M.U. Grujic-Brojcin, Z.V. Popovic, S.B. Boskovic, B.M. Matovic, M.V. Zinkevich, F. Aldinger, The size and strain effects on the Raman spectra of Ce1-xNdxO2-d (0 <= x <= 0. 25) nanopowders, Solid State Comm. 137 (2006).

DOI: 10.2298/sos0703281r

Google Scholar

[16] W.H. Weber, K.C. Hass, J.R. Mcbride, Raman-Study of CeO2 - 2nd-Order Scattering, Lattice-Dynamics, and Particle-Size Effects, Phys. Rev. B, 48 (1993) 178-185.

Google Scholar

[17] N. Paunovic, Z. Dohcevic-Mitrovic, R. Scurtu, S. Askrabic, M. Prekajski, B. Matovic, Z.V. Popovic, Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals, Nanoscale 4 (2012) 5469-5476.

DOI: 10.1039/c2nr30799e

Google Scholar

[18] N.J.C. Ingle, R.H. Hammond, M.R. Beasley, Growth of the Cr oxides via activated oxygen reactive molecular beam epitaxy: Comparison of the Mo and W oxides, J. Appl. Phys. 89 (2001) 4631-4635.

DOI: 10.1063/1.1355286

Google Scholar

[19] C. Xu, M. Hassel, H. Kuhlenbeck, H.J. Freund, Adsorption and Reaction on Oxide Surfaces - NO, NO2 on Cr2O3(111)/Cr(110), Surface Sci. 258 (1991) 23-34.

DOI: 10.1016/0039-6028(91)90897-2

Google Scholar

[20] A. Zunger, S. Lany, H. Raebiger, The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory, Physics 3 (2010) 53.

DOI: 10.1103/physics.3.53

Google Scholar