Solid Solutions Study of BaTiO3 Doped on B Site by Electronic Compensation

Article Preview

Abstract:

Several compositions of BaTiO:Nb5+ were made by conventional solid-state method in air atmosphere, according to the general formula BaTi1-xNbxO3; (x= 0.005, 0.04, 0.08, 0.20, and 0.25). The crystal structure, microstructure, dielectric and ferroelectric properties of samples were investigated by XRD, Raman Spectroscopy, Electrical Measurements and SEM. X-ray diffraction results clearly indicated that when x ≥ 0.25 was prepared; the hexagonal phase Ba8Ti3Nb4O24 appeared. Electrical measurements at 1 kHz were carried out and several pellets were made, the relative permittivity was calculated. The dielectric constant of the pristine BaTiO3 is about 7000, and the Curie temperature is ≈120°C at room temperature, decreasing to 90°C with Nb5+ addition (x = 0.005).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Lemanov: Ferroelectr. Vol. 354 (2007), pp.69-76.

Google Scholar

[2] D.H. Yoon and B.I. Lee: J. Ceram. Process. Res. Vol. 3 (2002), pp.41-48.

Google Scholar

[3] C.J. Xiao, C.Q. Jin and X.H. Wang: Mater. Chem. Phys. Vol. 111 (2008), pp.209-212.

Google Scholar

[4] C.B. Carter and M.G. Norton, Ceramics Materials Science and Engineering, first ed., Springer, New York, (2007).

Google Scholar

[5] K.C. Kao, Dielectric Phenomena in Solids, first ed., Academic Press, London, (2004).

Google Scholar

[6] A.J. Moulson and J.M. Herbert, Electroceramics, second ed., John Wiley and Sons, Hoboken, (2003).

Google Scholar

[7] K. Uchino, Ferroelectric Devices, first ed., Marcel Dekker, New York, (2000).

Google Scholar

[8] A.R. West, Basic Solid State Chemistry, second ed., John Wiley and Sons, Chichester, (1999).

Google Scholar

[9] S. Mahajan, O.P. Thakur, K. Sreenivas and C. Prakash: Integr. Ferroelectr. Vol. 122 (2010), pp.83-89.

Google Scholar

[10] J.S. Kim, C.W. Ahn, H.J. Lee, I.W. Kim and B.M. Jin: Ceram. Int. Vol. 30 (2004), pp.1459-1462.

Google Scholar

[11] D.F.K. Hennings, S. Schreinemacher and H. Schreinemacher: J. Am. Ceram. Soc. Vol. 84 (2001), pp.2777-2782.

Google Scholar

[12] O.G. Gromov, A.P. Kuzmin, G.B. Kunshina, E.P. Lokshin and V.T. Kalinnikov: Inor. Mat. Vol. 42 (2006), pp.176-181.

Google Scholar

[13] J.A. Lewis: J. Am. Ceram. Soc. Vol. 83 (2000), pp.2341-2359.

Google Scholar

[14] B.W. Lee and G.S. Choi: J. Ceram. Process. Res. Vol. 4 (2003), pp.151-154.

Google Scholar

[15] B.D. Stojakovic, A.Z. Simoes, C.O. Paiva-Santos, C. Jovalevic, V.V. Mitic and J.A. Varela: J. Eur. Ceram. Soc. Vol. 25 (2005), p.1985-(1989).

Google Scholar

[16] K. Chen, Y.P. Pu and J.K. Liu: Ceram. Int. Vol. 38 (2012), pp.101-104.

Google Scholar

[17] B. Wang, Y.P. Pu, N. Xu, H.D. Wu and K. Chen: Ceram. Int. Vol. 38 (2012), pp.37-40.

Google Scholar

[18] K.J. Park, C.H. Kim, Y.J. Yoon, S.M. Song, Y.T. Kim and K.H. Hur: ceramics, J. Eur. Ceram. Soc. Vol. 29 (2009), pp.1735-1741.

Google Scholar

[19] F.R. Barrientos Hernández, A. Arenas Flores and E. Cardoso Legorreta: Integr. Ferroelectr. Vol. 126 (2011), pp.1-6.

Google Scholar

[20] Y. Yuan, S.R. Zhang, X.H. Zhou and B. Tang: J. Mater. Sci. Vol. 44 (2009), pp.3751-3757.

Google Scholar

[21] O. Parkash, D. Kumar, R.K. Dwivedi, K.K. Srivastava, P. Singh and S. Singh: J. Mater. Sci. Vol. 42 (2007), pp.5490-5496.

Google Scholar

[22] M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni and M. Hanuskova: J. Eur. Ceram. Soc. Vol. 20 (2000), p.1997-(2007).

DOI: 10.1016/s0955-2219(00)00076-5

Google Scholar

[23] M.S. Chen, Z.X. Shen, S.H. Tang, W.S. Shi, D.F. Cui and Z.H. Chen: J. Phys. Condens. Matter. Vol. 12 (2000), pp.7013-7023.

Google Scholar