Structural and Textural Study of Highly Porous Carbon Nanospheres

Article Preview

Abstract:

Highly porous carbon nanospheres, external diameter ranging from 40 to 240 nm, have been produced from the chlorination reaction of metallocenes and derivatives at 900 °C. Their nanostructure, studied by Raman spectroscopy, consists of highly disordered graphene-like layers with size below to 6 nm. Their textural parameters showed surface area as high as 1320 m2/g and average pore width of 1.1 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-40

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Kroto, J.R. Heath, S.C. O´Brien, R.F. Curl, R.E. Smalley: Nature Vol. 318 (1985), p.162.

Google Scholar

[2] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[3] A.K. Geim, K. S Novoselov: Nature materials Vol. 6 (2007), p.186.

Google Scholar

[4] V. Nyamori, S. Mhlanga, N. Coville: J. Organomet. Chem. Vol. 693 (2008), p.2205.

Google Scholar

[5] G.N. Yushin, E.N. Hoffman, A. Nikitin, H. Ye, M.W. Barsoum, Y. Gogotsi: Carbon Vol. 43 (2005), p. (2075).

Google Scholar

[6] R.K. Dash, A. Nikitin, Y. Gogotsi: Microp. Mesop. Mat. Vol. 72 (2004), p.203.

Google Scholar

[7] E. Urones-Garrote, D. Ávila -Brande, N. Ayape-Katcho, A. Gómez-Herrero, A. Landa-Cánovas, L.C. Otero-Díaz: Carbon Vol. 43 (2005), p.978.

DOI: 10.1016/j.carbon.2004.11.028

Google Scholar

[8] L. Otero-Diaz, P. Gonzalez Garcia, D. Avila Brande, E. Urones Garrote: Microsc. Microanal. Vol. 18 (2012), p.1568.

DOI: 10.1017/s1431927612009695

Google Scholar

[9] P. González-García, E. Urones-Garrote, D. Ávila-Brande, L.C. Otero-Díaz: Carbon Vol. 52 (2013), p.90.

DOI: 10.1016/j.carbon.2012.09.009

Google Scholar

[10] P. González-García, T.A. Centeno, E. Urones-Garrote, D. Ávila-Brande, L. C. Otero-Díaz: Mat. Chem. Phys. Vol. 130 (2011), p.243.

DOI: 10.1016/j.matchemphys.2011.06.063

Google Scholar

[11] P. González-García, E. Urones-Garrote, D. Ávila-Brande, A. Gómez-Herrero, L.C. Otero-Díaz: Carbon Vol. 48 (2010), p.3667.

DOI: 10.1016/j.carbon.2010.06.003

Google Scholar

[12] C.N.R. Rao, A. Govindaraj: Acc. Chem Res. Vol. 35 (2002), p.998.

Google Scholar

[13] J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger: Pure Appl. Chem. Vol 66 (1994), p.1739.

DOI: 10.1351/pac199466081739

Google Scholar

[14] F. Tuinstra F, J.L. Koenig: J. Chem. Phys. Vol. 53 (1970), p.1126.

Google Scholar

[15] N. Larouche, B.L. Stansfield: Carbon Vol. 48 (2010), p.620.

Google Scholar

[16] R.J. Nemanich, S.A. Dolin: Phys. Rev. B. Vol 20 (1979) p.392.

Google Scholar

[17] M. Sevilla, S. Alvarez, A.B. Fuertes: Microp. Mesop. Mat. Vol 72 (2004), p.49.

Google Scholar