[1]
A. Benjeddou, M.A. Trindade, R. Ohayon, A unified beam finite element model for extension and shear piezoelectric actuation mechanisms, J. Intell. Mater. Syst. Struct. 8 (1997) 1012-1025.
DOI: 10.1177/1045389x9700801202
Google Scholar
[2]
E.F. Crawley, J. de Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA J. 25 (1987) 1373-1385.
DOI: 10.2514/3.9792
Google Scholar
[3]
H. Abramovich, B. Pletner, Actuation and sensing of piezolaminated sandwich type structures, Compos. Struct. 38 (1997) 17-27.
DOI: 10.1016/s0263-8223(97)00037-8
Google Scholar
[4]
S. Yang, B. Ngoi, Shape control of beams by piezoelectric actuators, AIAA J. 38 (2000) 2292-2298.
DOI: 10.2514/2.898
Google Scholar
[5]
D.H. Robbins, J.N. Reddy, Analysis of piezoelectrically actuated beams using a layer-wise displacemnet theory, Comput. Struct. 41 (1991) 265-279.
DOI: 10.1016/0045-7949(91)90430-t
Google Scholar
[6]
W.S. Hwang, H.C. Park, Finite element modeling of piezoelectric sensors and actuators, AIAA J. 31 (1993) 930-937.
DOI: 10.2514/3.11707
Google Scholar
[7]
Z. Wang, S. Chen, W. Han, The static shape control for intelligent structures, Finite Elem. Anal. Des. 26 (1997) 303-314.
Google Scholar
[8]
R. Zemcik, P. Sadilek, Modal analysis of beam with piezoelectric sensors and actuators, Applied and Computational Mechanics 1 (2007) 381-386.
Google Scholar
[9]
I.M. Bendary, M.A. Elshafei, A.M. Riad, Finite element model of smart beams with distributed piezoelectric actuators, J. Intell. Mater. Syst. Struct. 21 (2010) 747-758.
DOI: 10.1177/1045389x10364862
Google Scholar
[10]
P. Sadilek, R. Zemcik, Frequency response analysis of hybrid piezoelectric cantilever beam, Engineering Mechanics 17 (2010) 73-82.
Google Scholar
[11]
M.H.H. Shen, A new modeling technique for piezoelectrically actuated beams, Comput. Struct. 57 (1995) 361-366.
DOI: 10.1016/0045-7949(95)00042-f
Google Scholar
[12]
S. Narayanan , V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators, J. Sound Vib. 262 (2003) 529-562.
DOI: 10.1016/s0022-460x(03)00110-x
Google Scholar
[13]
M.A. Neto, W. Yu, S. Roy, Two finite elements for general composite beams with piezoelectric actuators and sensors, Finite Elem. Anal. Des. 45 (2009) 295-304.
DOI: 10.1016/j.finel.2008.10.010
Google Scholar
[14]
S. Raja, G. Pratap, P.K. Sinha, Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators, Smart Mater. Struct. 11 (2002) 63-71.
DOI: 10.1088/0964-1726/11/1/307
Google Scholar
[15]
X.Q. Peng, K.Y. Lam, G.R. Liu, Active vibration control of composite beams with piezoelectrics: A finite element model with third order theory, J. Sound Vib. 209 (1998) 635-650.
DOI: 10.1006/jsvi.1997.1249
Google Scholar
[16]
C.Y.K. Chee, L. Tong, G. P. Steven, A mixed model for composite beams with piezoelectric actuators and sensors, Smart Mater. Struct. 8 (1999) 417-432.
DOI: 10.1088/0964-1726/8/3/313
Google Scholar
[17]
M.A. Elshafei, F. Alraiess, Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Mater. Struct. 22 (2013) 35006-35019.
DOI: 10.1088/0964-1726/22/3/035006
Google Scholar
[18]
L.N. Sulbhewar, P. Raveendranath, A novel efficient coupled polynomial field interpolation scheme for higher order piezoelectric extension mode beam finite elements, Smart Mater. Struct. 23 (2014) 25024-25033.
DOI: 10.1088/0964-1726/23/2/025024
Google Scholar
[19]
T.S. Plagianakos, D.A. Saravanos, Coupled high-order shear layerwise analysis of adaptive sandwich piezoelectric composite beams, AIAA J. 43 (2005) 885-894.
DOI: 10.2514/1.12269
Google Scholar
[20]
S. Kapuria, P. Hagedorn, Unified efficient layerwise theory for smart beams with segmented extension/shear mode, piezoelectric actuators and sensors, J. Mech. Mater. Struct. 2 (2007) 1267- 1298.
DOI: 10.2140/jomms.2007.2.1267
Google Scholar
[21]
L.N. Sulbhewar, P. Raveendranath, Assessment of induced potential effects on the performance of piezoelectric beam finite elements, International Journal of Aerospace and Lightweight Structures 3 (2013) 513-530.
DOI: 10.3850/s2010428614000063
Google Scholar