[1]
H. J. Hellman, J. Chem. Phys., 3 (1935) 61.
Google Scholar
[2]
Gorczycat et al; Pseudopotential and k. p band parameter for GaAs, InP and InSb. Semicond. Sci. Technol. 6 (1991).
Google Scholar
[3]
Jun Sato, Yutaro Nagai, et al;. Analysis of Performances of InSb HEMTs Using Quantum-Corrected Monte Carlo Simulation. 2013 IEEE. PP237 -240.
DOI: 10.1109/iciprm.2012.6403367
Google Scholar
[4]
Hai Dang Trinh et. al. Electrical Characteristics of Al2O3/InSb MOSCAPs and the Effect of Postdeposition Annealing Temperatures. IEEE transactions on electron devices, VOL. 60, NO. 5, MAY 2013. PP: 1555-1560.
DOI: 10.1109/ted.2013.2254119
Google Scholar
[5]
R. Vaid and R. Prasher. Exploring InSb as Novel Channel Material for Nanoscale Devices using Simulation Approach. PROC. MIEL 2012, MAY, 2012, PP: 119-122.
DOI: 10.1109/miel.2012.6222811
Google Scholar
[6]
Somaia Sarwat Sylvia, et al. Doping, Tunnel Barriers, and Cold Carriers in InAs and InSb Nanowire Tunnel Transistors. IEEE transactions on electron devices, vol. 59, no. 11, november 2012. PP: 2996-3001.
DOI: 10.1109/ted.2012.2212442
Google Scholar
[7]
T. Ashley1, et al.; High Performance InSb QWFETs for Low Power Dissipation Millimetre Wave Applications. 2010, EuMA, PP 158-161.
Google Scholar
[8]
D. C. Herbert, et al; Simulations of High-Speed InSb–InAlSb FETs. IEEE transactions on electron devices, VOL. 52, NO. 6, JUNE 2005. PP: 1072-1078.
DOI: 10.1109/ted.2005.848115
Google Scholar
[9]
Jaydeep P. Kulkarni.; Technology Circuit Co-Design for Ultra Fast InSb Quantum Well Transistors. IEEE transactions on electron devices, VOL. 55, NO. 10, OCTOBER 2008. PP: 2537-2535.
DOI: 10.1109/ted.2008.2003030
Google Scholar
[10]
Somaia Sarwat Sylvia, et al; Material Selection for Minimizing Direct Tunneling in Nanowire Transistors. IEEE transactions on electron devices, VOL. 59, NO. 8, AUGUST 2012. PP: 2064-(2069).
DOI: 10.1109/ted.2012.2200688
Google Scholar
[11]
M. Abul Khayer, Roger K. Lake. The Quantum and Classical Capacitance Limits of InSb and InAs Nanowire FETs. IEEE transactions on electron devices, VOL. 56, NO. 10, OCTOBER 2009. PP: 2215-2223.
DOI: 10.1109/ted.2009.2028401
Google Scholar
[12]
M. Abul Khayer, Roger K. Lake. Drive Currents and Leakage Currents in InSb and InAs Nanowire and Carbon Nanotube Band-to-Band Tunneling FETs. IEEE electron device letters, VOL. 30, NO. 12, DECEMBER 2009. PP: 1257.
DOI: 10.1109/led.2009.2034277
Google Scholar
[13]
Gilbert Dewey, et al; Carrier Transport in High-Mobility III-V Quantum-Well Transistors and Performance Impact for High-Speed Low-Power Logic Applications. IEEE electron device letters, VOL. 29, NO. 10, OCTOBER 2008. PP: 1094-1097.
DOI: 10.1109/led.2008.2002945
Google Scholar
[14]
Vasyl P. Kunets, et al;. InSb Quantum-Well-Based Micro-Hall Devices: Potential for pT Detectivity. ieee transactions on electron devices, vol. 56, no. 4, april 2009. pp : 683-687.
DOI: 10.1109/ted.2009.2014187
Google Scholar
[15]
Akira Endoh, et al; Low-Voltage and High-Speed Operations of 30-nm-Gate Pseudomorphic In0. 52Al0. 48As/In0. 7Ga0. 3As HEMTs Under Cryogenic Conditions. IEEE electron device letters, vol. 30, no. 10, october 2009. PP: 1024-1026.
DOI: 10.1109/led.2009.2029127
Google Scholar
[16]
Steven Bentley, The Development of Sub-25 nm III-V High Electron Mobility Transistors. July (2009).
Google Scholar
[17]
Dragica Vasileska, Empirical Pseudopotential Method: Theory and Implementation Details, Arizona State University Tempe, AZ 85287-5706, USA.
Google Scholar