Impact Behaviour Analysis of Sisal/Jute and Glass Fiber Reinforced Hybrid Composites

Article Preview

Abstract:

The fibers from naturally available resources are considered to have potential alternate reinforcing agent in polymer matrix composite materials due to their properties such as high strength, stiffness, degradable in nature and renewable in nature. In this study a lightweight, low cost and environment friendly hybrid composites are prepared by using sisal-jute-glass fibers as the reinforcement materials. There are three types of composites such as sisal/glass fiber reinforced polymer (SGFRP) composites, jute/glass fiber reinforced polymer (JGFRP) composites and sisal/jute/glass fiber reinforced polymer (SJGFRP) composites are prepared by hand lay-up process and underwent to charpy impact test in order to study their impact properties. Post impact induced damage, material failure mechanism, matrix cracking, fiber breakage and pullout was observed by using scanning electron microscopy (SEM) analysis. The results showed that the energy absorption and load carrying capacity of JGFRP composites are better and able to withstand higher loads than SGFRP composites and SJGFRP composites. It is further observed from the experiment, the inclusion of sisal and jute fibers with glass fiber reinforced polymer (GFRP) composites has gained good impact properties. It is suggested that these light weight sisal and jute fibers have been used as an alternative reinforcing material to synthetic fiber for medium load applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

266-272

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Silva F. de A., Filho R. D. T., Filho J. de A. M., Fairbairn E. de M. R. F., Physical and mechanical properties of durable sisal fiber cement composites, Construction and Building Materials; 2010; 24: p.777–785.

DOI: 10.1016/j.conbuildmat.2009.10.030

Google Scholar

[2] Idicula M., Malhotra S. K., Joseph K., Sabu Thomas, Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fiber reinforced polyester composites, Composites Science and Technology; 2005; 65: pp.1077-1087.

DOI: 10.1016/j.compscitech.2004.10.023

Google Scholar

[3] Ruksakulpiwat S., Sridee J., Suppakam N., Sutapun W., Improvement of impact property of natural fiber-polypropylene composite by using natural rubber and EPDM rubber, Composites: Part B; 2009; 40: p.619–622.

DOI: 10.1016/j.compositesb.2009.04.006

Google Scholar

[4] Dhaka H. N., Zhang Z. Y., Richardson M. O. W., Errajhi O. A. Z., The low velocity impact response of non woven hemp fiber reinforced unsaturated polyester composites, Composite Structures; 2007; 81: pp.559-567.

DOI: 10.1016/j.compstruct.2006.10.003

Google Scholar

[5] Dhaka H. N., Zhang Z. Y., Bennett N., Reis P.N.B., Low velocity impact response of non woven hemp fiber reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity, Composite Structures; 2012; 94: pp.2756-2763.

DOI: 10.1016/j.compstruct.2012.04.004

Google Scholar

[6] Bledzki A. K., Faruk O., Creep and impact properties of wood fiber polypropylene composites: influence of temperature and moisture content, Composites Science and Technology; 2004; 64: pp.693-670.

DOI: 10.1016/s0266-3538(03)00291-4

Google Scholar

[7] Anuar H., Zuraida A., Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fiber, Composites: Part B; 2011; 42: p.462–465.

DOI: 10.1016/j.compositesb.2010.12.013

Google Scholar

[8] Bax B., Mussig J., Impact and tensile properties of PLA/cordenka and PLA/flax composites, Composites Science and Technology; 2008; 68: pp.1601-1607.

DOI: 10.1016/j.compscitech.2008.01.004

Google Scholar

[9] Yuanjian T., Isaac D.H., Impact and fatigue behavior of hemp fiber composites, Composites Science and Technology; 2007; 67: pp.3300-3307.

DOI: 10.1016/j.compscitech.2007.03.039

Google Scholar

[10] Ghasemnejad H., Soroush V. R., Mason P.J., Weager B., To improve impact damage response of single and multi delaminated fiber reinforced polymer composites using flax natural yarn, Materials and Design; 2012; 36: pp.865-873.

DOI: 10.1016/j.matdes.2011.05.018

Google Scholar

[11] Srubar III W. V., Pilla S., Wright Z. C., Ryan C. A., Greene J. P., Frank C. W., Billigton S. L., Mechanisms and impact of fiber matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered bio based composites, Composites Science and Technology; 2012; 72: pp.708-715.

DOI: 10.1016/j.compscitech.2012.01.021

Google Scholar

[12] Ramakrishna G., Sundararajan T., Impact strength of a few natural fiber reinforced cement mortar slabs: a comparative study, Cement & Concrete Composites; 2005; 27: pp.547-553.

DOI: 10.1016/j.cemconcomp.2004.09.006

Google Scholar

[13] Wang X., Bah, Feng Y., Liang F., Mo J., Xiong J., Qiu Y., Low Velocity impact properties of 3D woven basalt/aramid hybrid composites, Composites Science and Technology; 2008; 68: pp.444-450.

DOI: 10.1016/j.compscitech.2007.06.016

Google Scholar

[14] Rosa I. M. De, Santulli C., Sarasini F., Valente M., Post-impact damage characterization of hybrid configurations of jute/glass polyester laminates using acoustic emission and IR thermography, Composites Science and Technology; 2006; 69: pp.1142-1150.

DOI: 10.1016/j.compscitech.2009.02.011

Google Scholar

[15] Chakraborty S., Kundu S. P., Roy A., Basak R. K., Adhikari B., Majumder S. B., Improvement of the mechanical properties of jute fiber reinforced cement mortar: A statistical Approach, Construction and Building Materials; 2013; 38: pp.776-784.

DOI: 10.1016/j.conbuildmat.2012.09.067

Google Scholar

[16] Srinivasa C. V., Arifulla A., Goutham N., Santhosh T., Jaeethendra H. J., Ravikumar R. B., Anil S. G., Santhoshkumar D. G., Asish J., Static bending and impact behaviour of areca fibers composites, Materials and design; 2011; 32: pp.2469-2475.

DOI: 10.1016/j.matdes.2010.11.020

Google Scholar

[17] Jawaid M., Khalil H. P. S. A., Hassan A., Dungani R., Hadiyane A., Effect of jute fiber loading on tensile and dynamic mechanical properties of oil palm epoxy composites, Composites: Part B; 2013; 45: pp.619-624.

DOI: 10.1016/j.compositesb.2012.04.068

Google Scholar

[18] Venkateshwaran N., Elayaperumal A., Alavudeen A., Thiruchitrambalam M., Mechanical and water absorption behavior of banana/sisal reinforced hybrid composites, Materials and Design; 2011; 32: p.4017–4021.

DOI: 10.1016/j.matdes.2011.03.002

Google Scholar

[19] Ramesh M., Palanikumar K., Reddy K. H., Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites, Composites: Part B; 2013; 48: p.1–9.

DOI: 10.1016/j.compositesb.2012.12.004

Google Scholar

[20] ASTM standard D6110. Standard test method for determining the charpy impact resistance of notched specimens of plastics. Annual book of ASTM standards: (2002).

DOI: 10.1520/d6110-05a

Google Scholar