Design, Fabrication and Experimental Analysis of Pandanus Fibre Reinforced Polyester Composite

Article Preview

Abstract:

Due to the light weight, high strength to weight ratio, corrosion resistance and other advantages, natural fibre based composites are becoming important composite materials in mechanical engineering fields. The current project emphasizes the newly identified Pandanus Fibre (Pandanus Fascicularis) which is extracted from the stem of screw pine tree by the manual water treatment process. The mechanical properties of chopped Pandanus fibre by Polyester composites are investigated and compared with the similar natural fibres in the fibre reinforced composite material field. The composite plates were fabricated with raw pandanus fibres by compression moulding method with varying weight percentage and lengths of fibre.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 984-985)

Pages:

253-256

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Velmurugan, V. Manikandan, S.G. Ponnambalam, Sabu Thomas, Mechanical properties of short and uni-directional palmyra fiber reinforced composite, Int J Plast Technol. 8 (2004) 205-16.

Google Scholar

[2] V.S. Sreenivasan, D. Ravindran, V. Manikandan, R. Narayanasamy, Mechanical properties of randomly oriented short Sansevieria cylindrica fibre / polyester composites, Mater Des. 32 (2011) 2444-2455.

DOI: 10.1016/j.matdes.2010.11.042

Google Scholar

[3] T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites, Comp Sci & Tech. 72 (2012) 1183-1190.

DOI: 10.1016/j.compscitech.2012.04.001

Google Scholar

[4] A. Athijayamania, M. Thiruchitrambalamb, U. Natarajana, B. Pazhanivel, Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers / polyester hybrid composite, Mater Sci Eng. 517 (2009) 344–353.

DOI: 10.1016/j.msea.2009.04.027

Google Scholar

[5] A.V. Kiruthika, K. Veluraja, Experimental studies on the physico-chemical properties of banana fiber from various varieties, Fiber Polym. 10(2) (2009) 193–9.

DOI: 10.1007/s12221-009-0193-7

Google Scholar

[6] Silva Flavio de Andrade, Chawla Nikhilesh, Filho Ramildo Dias de Toledo, Tensile behavior of high performance natural (sisal) fibers, Comp Sci & Tech. 68 (2008) 3438–43.

DOI: 10.1016/j.compscitech.2008.10.001

Google Scholar

[7] Bos HL, Van den oever MJA, Peters OCJJ, Tensile and compressive properties of flax fibres for natural fibre reinforced composites, J Mater Sci. 37 (2002) 1683–92.

Google Scholar

[8] Paul Wambua, Jan Ivens, Ignaas Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics?, Comp Sci & Tech. 63 (2003) 1259–1264.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[9] F.L. Matthews, R.D. Rawlings, Composite Materials: Engineering and Science, first ed., Woodhead Publishing Ltd., Cambridge, 2005, p.169– 73, 310–11.

Google Scholar

[10] A.V. Ratna Prasad, K. Mohana Rao, Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo, Mater Des. 32 (2011) 4658–4663.

DOI: 10.1016/j.matdes.2011.03.015

Google Scholar

[11] S. Jayabal, U. Natarajan, Influence of fibre parameters on tensile, flexural, and impact properties of nonwoven coir–polyester composites, Adv Manuf Tech. 70 (2010) 2969–77.

DOI: 10.1007/s00170-010-2969-8

Google Scholar

[12] ASTM D 638-89. Standard test method for tensile properties of plastics.

Google Scholar

[13] K. Murali Mohan Rao, A.V. Ratna Prasad, M.N.V. Ranga Babu, K. Mohan Rao, Tensile properties of elephant grass fibre reinforced polyester composite, Mater Sci. 42 (2007) 2666–72.

DOI: 10.1007/s10853-006-0657-8

Google Scholar

[14] ASTM D 790 M-86. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.

DOI: 10.1520/d0790-10

Google Scholar

[15] G. Kalaprasad, K. Joseph, S. Thomas, C. Pavithran, Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites, J Mater Sci. 32 (1997) 4261–7.

DOI: 10.1002/pi.1453

Google Scholar

[16] Kumar Rakesh, Choudhary Veena, Mishra Saroj, I.K. Varma, Banana fiber reinforced biodegradable soy protein composite, Front Chem China. 3(3) (2008) 243–50.

DOI: 10.1007/s11458-008-0069-1

Google Scholar

[17] D.T.F. Romildo, S. Karen, L.E. George, K. Ghavami, Durability of alkali sensitive sisal and coconut fibres in cement mortar composites, Cem Concr Compos. 22 (2000) 127–43.

DOI: 10.1016/s0958-9465(99)00039-6

Google Scholar

[18] V.G. Geethamma, K.T. Mathew, S. Thomas, Composite of short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fibre, Polymer. 39 (1998) 1483–91.

DOI: 10.1016/s0032-3861(97)00422-9

Google Scholar