[1]
Faith, T.; Ayer, K.; Ahmet, K.; Mustafa, C.; Isil, K. Processing and microstructural characterization of AA1070 and AA6063 matrix B4Cp reinforced composites. Materials and Design 2010, 31, S87-S91.
DOI: 10.1016/j.matdes.2009.11.064
Google Scholar
[2]
Canakci, A. Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites. Journal of Material Science 2011, 46(08), 2805-2813.
DOI: 10.1007/s10853-010-5156-2
Google Scholar
[3]
Kevorkijan, V.; Skapin, S.D. Mg/B4C composite with a high volume fraction of fine ceramic reinforcement. Materials and Manufacturing Processes 2009, 24, 1337-1340.
DOI: 10.1080/10426910902997076
Google Scholar
[4]
Kwang-Min L, In-Hyung M. High temperature performance of dispersion-strengthened Al-Ti alloys prepared by mechanical alloying. Materials Science and Engineering A, 1994, 185: 165–171.
DOI: 10.1016/0921-5093(94)90940-7
Google Scholar
[5]
Birol Y. Analysis of the response to thermal exposure of Al/K2TiF6 powder blends. Journal of Alloys and compounds, 2008, 455(1-2): 164–167.
DOI: 10.1016/j.jallcom.2007.01.021
Google Scholar
[6]
Nofar M, Madaah Hosseini H R, Kolagar-Daroonkolaie N. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method. Materials and Design, 2009, 30: 280–286.
DOI: 10.1016/j.matdes.2008.04.071
Google Scholar
[7]
Srinvasan S, Chen S R, Schwarz R B. Synthesis of Al-Al3Titwo phase alloys by mechanical alloying. Materials Science and Engineering A, 1992, 153: 691–698.
Google Scholar
[8]
Feng C F, Froyen L. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminum matrix composites. Composites: Part A, 2000, 31: 385–390.
DOI: 10.1016/s1359-835x(99)00041-x
Google Scholar
[9]
Tjong S C, Tam K F, Wu S Q. Thermal cycling characteristics of in situ Al-based composites prepared by reactive hot pressing. Composites Science and Technology, 2003, 63: 89–97.
DOI: 10.1016/s0266-3538(02)00200-2
Google Scholar
[10]
Wu J M, Li Z Z. Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al-Ti alloys. Wear, 2000, 244: 147–153.
DOI: 10.1016/s0043-1648(00)00452-x
Google Scholar
[11]
Wu J M, Zheng S L, Li Z Z. Thermal stability and its effects on the mechanical properties of rapidly solidified Al-Ti alloys. Materials Science and Engineering A, 2000, 289: 246–254.
DOI: 10.1016/s0921-5093(00)00886-8
Google Scholar
[12]
Wang X, Jha A, Brydson R. In situ fabrication of Al3Ti particle reinforced aluminum alloy metal-matrix composites. Materials Science and Engineering A, 2004, 364: 339–345.
DOI: 10.1016/j.msea.2003.08.049
Google Scholar
[13]
Yu S R, Feng H K, Li Y L. A novel method for preparing Al matrix surface composites. Journal of Alloys and Compounds, 2008, 457: 404–407.
DOI: 10.1016/j.jallcom.2007.02.125
Google Scholar
[14]
Watanabe Y, Eryu H, Matsuura K. Evaluation of three-dimensional orientation of Al3Ti platelets in Al -based functionally graded materials fabricated by a centrifugal casting technique. Acta Materialia, 2001, 49: 775–783.
DOI: 10.1016/s1359-6454(00)00384-0
Google Scholar
[15]
Sato H, Murase T, Fujii T, et al. Formation of a wear-induced layer with nanocrystalline structure in Al-Al3Ti functionally graded material. Acta Materialia, 2008, 56: 4549–4558.
DOI: 10.1016/j.actamat.2008.05.012
Google Scholar
[16]
Das K, Narnaware L K. Synthesis and characterization of Al-4. 5%Cu/Al3Ti composites: microstructure and ageing behaviors. Materials Science and Engineering A, 2008, 497: 25-30.
DOI: 10.1016/j.msea.2008.06.014
Google Scholar
[17]
Watanabe Y, Yamanaka N, Fukui Y. Wear behavior of Al-Al3Ti composites manufactured by a centrifugal method, Metallurgical and Materials Transactions A, 1999, 30: 3253–3261.
DOI: 10.1007/s11661-999-0235-1
Google Scholar
[18]
Sequeira P D, Watanabe Y, Fukui Y. Backward extrusion of Al-Al3Ti functionally graded materials: volume fraction gradient and anisotropic orientation of Al3Ti platelets. Scripta Materialia, 2005, 53: 687–692.
DOI: 10.1016/j.scriptamat.2005.05.029
Google Scholar
[19]
Watanabe Y, Nakamura T. Microstructures and wear resistance of hybrid Al-(Al3Ti+Al3Ni) FGM fabricated by a centrifugal method. Intermetallics, 2001, 9: 33–43.
DOI: 10.1016/s0966-9795(00)00086-8
Google Scholar
[20]
Watanabe Y, Kawamoto A, Matsuda K. Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method. Composites Science and Technology, 2002, 62: 881–888.
DOI: 10.1016/s0266-3538(02)00023-4
Google Scholar
[21]
Auradi, V.; Kori, S.A. Influence of reaction temperature on the manufacturing of Al-3Ti and Al-3B master alloys. Journal of Alloys and Compounds, 2008, 453, 147-156.
DOI: 10.1016/j.jallcom.2006.11.119
Google Scholar
[22]
Chen Tijun, Li Jian and Hao Yuan, Casting fabrication of in situ Al3Ti-Al composites and their wear behaviors, Research and Development, China Foundry, 2009, 319-327.
Google Scholar