On the Mechanism of AC Electroosmosis

Article Preview

Abstract:

Previously researchers considered ions in electric double layers (EDL) to analyze the phenomenon of alternating current electroosmosis (ACEO). However, they did not give a deep interpretation about the formation mechanism of ACEO and their theories cannot explain some experimentally observed phenomena. In this paper, we propose a physical model to analyze the formation mechanism of ACEO by considering ions both in EDL and in solution. It is found that the ions in solution play an important role in ACEO, and by considering the effect of ions both in EDL and in solution, we can reasonably explain some phenomena, including flow reversal at high frequency (typically 10-100 kHz) and inapplicability of ACEO at high salt concentration (above 30 μM), which existing theories cannot give convincing explanations. We also use Navier-Stokes equation to theoretically analyze the ACEO and it is found that the flow reversal can be predicted by our concepts in certain conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 986-987)

Pages:

136-145

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang X, Cheng C, Wang S and Liu S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid, 2009 (6) 145-162.

DOI: 10.1007/s10404-008-0399-9

Google Scholar

[2] John Paul Urbanski, Todd Thorsen, Jeremy A. Levitan and Martin Z. Bazant. Fast ac electro-osmotic micropumps with nonplanar electrodes. Applied Physics Letters, 2006 (89) 143508.

DOI: 10.1063/1.2358823

Google Scholar

[3] Chien-Chih Huang, Martin Z. Bazant and Todd Thorsen. Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics. Lab Chip, 2010 (10) 80-85.

DOI: 10.1039/b915979g

Google Scholar

[4] Naoki Sasaki, Takehiko Kitamori and Haeng-Boo Kim. AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip, 2006 (6) 550-554.

DOI: 10.1039/b515852d

Google Scholar

[5] Jiong-Rong Du, Yi-Je Juang, Jie-Tang Wu and Hsien-Hung Wei. Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel. Biomicrofluidics, 2008 (2) 044103.

DOI: 10.1063/1.3037326

Google Scholar

[6] A Ramos, H Morgan, N G Green and A Castellanos. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys, 1998 (31) 2338-2353.

DOI: 10.1088/0022-3727/31/18/021

Google Scholar

[7] A Ramos, H Morgan, N G. Green and A Castellanos. LETTER TO THE EDITOR AC Electric-Field-Induced Fluid Flow in Microelectrodes. Journal of Colloid and Interface Science, 1999 (217) 420-422.

DOI: 10.1006/jcis.1999.6346

Google Scholar

[8] A. B. D. Brown, C. G. Smith and A. R. Rennie. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Physical Review E, 2000 (63) 016305.

DOI: 10.1103/physreve.63.016305

Google Scholar

[9] V. Studer, A. Pépin, Y. Chen and A. Ajdari. Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectronic Engineering, 2002 (61-62) 915-920.

DOI: 10.1016/s0167-9317(02)00518-x

Google Scholar

[10] A. Ramos, A. González, A. Castellanos, N. G. Green and H. Morgan. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Physical Review E, 2003 (67) 056302.

DOI: 10.1103/physreve.67.056302

Google Scholar

[11] Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E, 2000 61(1) R45–R48.

DOI: 10.1103/physreve.61.r45

Google Scholar

[12] Gonzalez A, Ramos A, Green NG, Morgan H and Castellanos A. Fluid flow induced by non-uniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Physical Review E, 2000 (61) 4019–4028.

DOI: 10.1103/physreve.61.4019

Google Scholar

[13] Bazant MZ and Ben Y. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip, 2006 (6) 1455–1461.

DOI: 10.1039/b608092h

Google Scholar

[14] Brian D. Storey, Lee R. Edwards, Mustafa Sabri Kilic and Martin Z. Bazant. Steric effects on ac electro-osmosis in dilute electrolytes. Physical Review E, 2008 (77) 036317.

DOI: 10.1103/physreve.77.036317

Google Scholar

[15] Vincent Studer, Anne Pépin, Yong Chen and Armand Ajdari. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst, 2004 (129) 944-949.

DOI: 10.1039/b408382m

Google Scholar

[16] Martin Z Bazant, Mustafa Sabri Kilic, Brian D Storey and Armand Ajdari. Nonlinear electrokinetics at large voltages. New Journal of Physics, 2009 (11) 075016.

DOI: 10.1088/1367-2630/11/7/075016

Google Scholar

[17] P. Garcia-Sanchez, A. Ramos, A. Gonzalez, N. G. Green and H. Morgan. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. Langmuir, 2009 25(9) 4988–4997.

DOI: 10.1021/la803651e

Google Scholar

[18] D. Lastochkin, R. H. Zhou, P. Wang, Y. X. Ben and H. C. Chang. Electrokinetic micropump and micromixer design based on ac faradaic polarization Journal of Applied Physics, 2004 (96) 1730-1733.

DOI: 10.1063/1.1767286

Google Scholar

[19] L. H. Olesen, H. Bruus and A. Ajdari. Ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Physical Review E, 2006 (73) 056313.

DOI: 10.1103/physreve.73.056313

Google Scholar

[20] Todd M. Squires. Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip, 2009 (9) 2477-2483.

DOI: 10.1039/b906909g

Google Scholar

[21] Martin Z. Bazant and Todd M. Squires. Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications. Physical Review Letters, 2004 92(6) 066101.

DOI: 10.1103/physrevlett.92.066101

Google Scholar

[22] T S Mansuripur, A J Pascall and T M Squires. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis. New Journal of Physics, 2009 (11) 075030.

DOI: 10.1088/1367-2630/11/7/075030

Google Scholar

[23] H. E. Becker 1957 U.S. Patent 2 800 616.

Google Scholar

[24] John R. Miller, R. A. Outlaw and B. C. Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance Science, 2010 (329) 1637-1639.

DOI: 10.1126/science.1194372

Google Scholar

[25] B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum Publishers, (1999).

Google Scholar

[26] N. G. Green, A. Ramos, A. González, H. Morgan and A. Castellanos. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical Review E, 2002 (66) 026305.

DOI: 10.1103/physreve.66.026305

Google Scholar