[1]
Wang X, Cheng C, Wang S and Liu S. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid, 2009 (6) 145-162.
DOI: 10.1007/s10404-008-0399-9
Google Scholar
[2]
John Paul Urbanski, Todd Thorsen, Jeremy A. Levitan and Martin Z. Bazant. Fast ac electro-osmotic micropumps with nonplanar electrodes. Applied Physics Letters, 2006 (89) 143508.
DOI: 10.1063/1.2358823
Google Scholar
[3]
Chien-Chih Huang, Martin Z. Bazant and Todd Thorsen. Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics. Lab Chip, 2010 (10) 80-85.
DOI: 10.1039/b915979g
Google Scholar
[4]
Naoki Sasaki, Takehiko Kitamori and Haeng-Boo Kim. AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip, 2006 (6) 550-554.
DOI: 10.1039/b515852d
Google Scholar
[5]
Jiong-Rong Du, Yi-Je Juang, Jie-Tang Wu and Hsien-Hung Wei. Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel. Biomicrofluidics, 2008 (2) 044103.
DOI: 10.1063/1.3037326
Google Scholar
[6]
A Ramos, H Morgan, N G Green and A Castellanos. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys, 1998 (31) 2338-2353.
DOI: 10.1088/0022-3727/31/18/021
Google Scholar
[7]
A Ramos, H Morgan, N G. Green and A Castellanos. LETTER TO THE EDITOR AC Electric-Field-Induced Fluid Flow in Microelectrodes. Journal of Colloid and Interface Science, 1999 (217) 420-422.
DOI: 10.1006/jcis.1999.6346
Google Scholar
[8]
A. B. D. Brown, C. G. Smith and A. R. Rennie. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Physical Review E, 2000 (63) 016305.
DOI: 10.1103/physreve.63.016305
Google Scholar
[9]
V. Studer, A. Pépin, Y. Chen and A. Ajdari. Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectronic Engineering, 2002 (61-62) 915-920.
DOI: 10.1016/s0167-9317(02)00518-x
Google Scholar
[10]
A. Ramos, A. González, A. Castellanos, N. G. Green and H. Morgan. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Physical Review E, 2003 (67) 056302.
DOI: 10.1103/physreve.67.056302
Google Scholar
[11]
Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E, 2000 61(1) R45–R48.
DOI: 10.1103/physreve.61.r45
Google Scholar
[12]
Gonzalez A, Ramos A, Green NG, Morgan H and Castellanos A. Fluid flow induced by non-uniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Physical Review E, 2000 (61) 4019–4028.
DOI: 10.1103/physreve.61.4019
Google Scholar
[13]
Bazant MZ and Ben Y. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip, 2006 (6) 1455–1461.
DOI: 10.1039/b608092h
Google Scholar
[14]
Brian D. Storey, Lee R. Edwards, Mustafa Sabri Kilic and Martin Z. Bazant. Steric effects on ac electro-osmosis in dilute electrolytes. Physical Review E, 2008 (77) 036317.
DOI: 10.1103/physreve.77.036317
Google Scholar
[15]
Vincent Studer, Anne Pépin, Yong Chen and Armand Ajdari. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst, 2004 (129) 944-949.
DOI: 10.1039/b408382m
Google Scholar
[16]
Martin Z Bazant, Mustafa Sabri Kilic, Brian D Storey and Armand Ajdari. Nonlinear electrokinetics at large voltages. New Journal of Physics, 2009 (11) 075016.
DOI: 10.1088/1367-2630/11/7/075016
Google Scholar
[17]
P. Garcia-Sanchez, A. Ramos, A. Gonzalez, N. G. Green and H. Morgan. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. Langmuir, 2009 25(9) 4988–4997.
DOI: 10.1021/la803651e
Google Scholar
[18]
D. Lastochkin, R. H. Zhou, P. Wang, Y. X. Ben and H. C. Chang. Electrokinetic micropump and micromixer design based on ac faradaic polarization Journal of Applied Physics, 2004 (96) 1730-1733.
DOI: 10.1063/1.1767286
Google Scholar
[19]
L. H. Olesen, H. Bruus and A. Ajdari. Ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Physical Review E, 2006 (73) 056313.
DOI: 10.1103/physreve.73.056313
Google Scholar
[20]
Todd M. Squires. Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip, 2009 (9) 2477-2483.
DOI: 10.1039/b906909g
Google Scholar
[21]
Martin Z. Bazant and Todd M. Squires. Induced-Charge Electrokinetic Phenomena: Theory and Microfluidic Applications. Physical Review Letters, 2004 92(6) 066101.
DOI: 10.1103/physrevlett.92.066101
Google Scholar
[22]
T S Mansuripur, A J Pascall and T M Squires. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis. New Journal of Physics, 2009 (11) 075030.
DOI: 10.1088/1367-2630/11/7/075030
Google Scholar
[23]
H. E. Becker 1957 U.S. Patent 2 800 616.
Google Scholar
[24]
John R. Miller, R. A. Outlaw and B. C. Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance Science, 2010 (329) 1637-1639.
DOI: 10.1126/science.1194372
Google Scholar
[25]
B. E. Conway. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum Publishers, (1999).
Google Scholar
[26]
N. G. Green, A. Ramos, A. González, H. Morgan and A. Castellanos. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical Review E, 2002 (66) 026305.
DOI: 10.1103/physreve.66.026305
Google Scholar