[1]
Lorenz E N. Deterministic nonperiodic flow[J]. Atmos. Sci, 1963, 20: 130-141.
Google Scholar
[2]
Lü J H, Chen G R. A new chaotic attractor coined [J]. Int J Bifure Chaos, 1999, 12: 659-661.
DOI: 10.1142/s0218127402004620
Google Scholar
[3]
Lv J, Lu J, Chen S. Chaotic time series analysis and application[ M]. Wuhan: Wu han University Press, (2002).
Google Scholar
[4]
Qi Guoyan, Chen Guanrong, Du Shengzhi, et al. Analysis of a New Chaotic System[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 352(2-4): 295-308.
DOI: 10.1016/j.physa.2004.12.040
Google Scholar
[5]
YANG Q G, CHEN G R, ZHOU T S. A unified Lorenz-type system and its canonical form [J]. International Journal of Bifurcation and Chaos, 2006, 16(10): 2855-2871.
DOI: 10.1142/s0218127406016501
Google Scholar
[6]
WEI Z C, YANG Q G. Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria [J]. Nonlinear Analysis: Real World Applications, 2011, 12(1): 106-118.
DOI: 10.1016/j.nonrwa.2010.05.038
Google Scholar
[7]
YAND Q G, WEI Z C, CHEN G R. A unusual 3D autonomons quadratic chaotic system with two stable node-foci [J]. International Journal of Bifurcation and Chaos, 2010, 20(4): 1061-1083. 35(2): 0288-05.
DOI: 10.1142/s0218127410026320
Google Scholar
[8]
Zaher A A, Rezq A. On the Design of Chaos-based Secure Communication Systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(9): 3721-3737.
DOI: 10.1016/j.cnsns.2010.12.032
Google Scholar
[9]
Zaher A A, Rezq A. On the Design of Chaos-based Secure Communication Systems[J]. Communications in Nonlinear.
Google Scholar
[10]
Science and Numerical Simulation, 2011, 16(9): 3721-3737.
Google Scholar
[11]
Ren Haipeng, liu ding Nonlinear feedback control in pemanent magnet o synchronous mator[J] IEEE Trans. Ciecuits and ststemnt (2005).
Google Scholar