[1]
GUO Lianzhe, LI Li, TAN Zhongfu, et al. Time-of-use price design models based on fuzzy demand and users' diverse response[J]. East China Electric Power. 2007, 35(5): 11-15.
Google Scholar
[2]
LUO Ling. Research on categorized time-of-use power price based on fuzzy c-means clustering[D]. Shandong University, (2013).
Google Scholar
[3]
LI Peiqiang, LI Xinran, CHEN Huihua, et al. The characteristics classification and synthesis of power load based on fuzzy clustering[J]. Proceedings of the CSEE. 2005, 25(24): 73-78.
Google Scholar
[4]
Birch A P, Ozveren C S, Sapeluk A T. A generic load profiling technique using fuzzy classification[C]. Brighton, UK: Proceedings of Eighth International Conference on Metering and Tariffs for Energy Supply, 1996. 203-207.
DOI: 10.1049/cp:19960507
Google Scholar
[5]
LIU Li, WANG Gang, ZHAI Denghui. Application of K-means clustering algorithm in load curve classification[J]. Power System Protection and Control. 2011, 39(23): 65-68, 73.
Google Scholar
[6]
LI ZHiyong, WU Jingying, WU Weilin, et al. Power customers load profile clustering using the SOM neural network[J]. Automation of Electric Power Systems. 2008(15): 66-70.
Google Scholar
[7]
SUN Yaming, WANG CHenli, ZHANG ZHisheng, et al. Clustering analysis of power system load series based on ant colony optimization algorithm[J]. Proceeding of the CESS. 2005(18): 40-45.
Google Scholar
[8]
DUAN Ru, ZHANG Caiqing, LIU Aifang. Application of fuzzy clutering method in classification of electricity customers[J]. Power Demand Side Management. 2005, 7(5): 18-20.
Google Scholar
[9]
Prahastono I, King D J, Ozveren C S, et al. Electricity load profile classification using fuzzy c-means method[C]. 43rd International Universities Power Engineering Conference, 2008. 1-5.
DOI: 10.1109/upec.2008.4651527
Google Scholar
[10]
ZHOU Kaile, YANG SHanlin. An improved fuzzy c-means algorithm for power load characteristics classification[J]. Power System Protection and Control. 2012(22): 58-63.
Google Scholar
[11]
ZENG Bo, ZHANG Jianhua, DING Lan, et al. An improved adaptive fuzzy c-means algorithm for load characteristics classification[J]. Automation of Electric Power Systems. 2011(12): 42-46.
Google Scholar
[12]
XIAO chunJing, ZHANG Min. Research on fuzzy clustering based on subtractive clustering and fuzzy c-means[J]. Computer Engineering. 2005(S1): 135-137.
Google Scholar
[13]
YU Jian, YANG Minshen. Optimality test for generalized FCM and its application to parameter selection[J]. IEEE Transactions on Fuzzy Systems. 2005, 13(1).
DOI: 10.1109/tfuzz.2004.836065
Google Scholar
[14]
YANG Hao, ZHANG Lei, HE Qian, et al. Study of power load classification based on adaptive fuzzy C means[J]. Power System Protection and Control. 2010(16): 111-115.
Google Scholar
[15]
ZHANG Xun, DENG Huiwen. On the FCM clustering based on subtractive clustering and cluster validity evaluation[J]. Journal of Chongqing Institute of Technology. 2006(05): 59-62.
Google Scholar
[16]
FAN Jiulun, PEI Jihong, XIE Weixin. Cluster validity based on possibilistic distribution[J]. Acta Electronica Sinica. 1998(04): 113-115.
Google Scholar