[1]
Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Process. Technol, 2003 (82) 89-165.
DOI: 10.1016/s0378-3820(03)00059-6
Google Scholar
[2]
U.S. Government Printing Office, A Study of Hazardous Air Pollutant from Electric Utility Steam Generating Units: Final Report to Congress [R]. Washington, DC, (1998).
Google Scholar
[3]
U.S. Environmental Protection Agency, Airlink Web Site at: http: /www. epa. gov/ airquality/combustion/actions. html#dec12.
Google Scholar
[4]
Stiftung Wissenschaft und Politik (SWP). German Institute for International and Security Affairs. The UN Minamata Convention on Mercury [S]. (2013).
DOI: 10.1007/978-1-349-59643-0_139
Google Scholar
[5]
Wilcox J, Rupp E, Ying S C, Lim D H, et al. Mercury adsorption and oxidation in coal combustion and gasification processes [J]. International Journal of Coal Geology 2012 (90) 4–20.
DOI: 10.1016/j.coal.2011.12.003
Google Scholar
[6]
Laudal D L, Pavlish J H, Brown T D, et al. Pilot-scale evaluation of the impact of selective catalytic reduction for NOx on mercury speciation[C]. Proceeding of the Air and Wastc Management Association Annual Meeting, Orlando, Florida, (2001).
DOI: 10.2172/824958
Google Scholar
[7]
Wang Peng-ying, Su Sheng, Xiang Jun, et al. Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst [J]. Chemical Engineering Journal, 2013 (225) 68-75.
DOI: 10.1016/j.cej.2013.03.060
Google Scholar
[8]
China Electricity Council. 2013. Airlink Web Site at: http: /www. cec. org. cn/xinxifabu/ 2013-03-18/98950. html.
Google Scholar
[9]
Chinese Research Academy of Environmental Sciences. GB 13223—2011 power plant air pollutant emission standards [S]. Beijing: Environmental Science Press of China.
Google Scholar
[10]
Du Wen, Yin Li-bao, Zhuo Yu-qun, et al. Catalytic Oxidation and Adsorption of Elemental Mercury over CuCl2-Impregnated Sorbents[J]. Industrial & Engineering Chemistry Research, 2014 (53) 582-591.
DOI: 10.1021/ie4016073
Google Scholar
[11]
Lee C W, Srivastava R K, Ghorishi S B, et al. Study of Speciation of Mercury under Simulated SCR NOx Emission Control Conditions [C]. Proceedings of the MEGA Symposium, Washington, DC, (2003).
Google Scholar
[12]
Niksa S, Fujiwara N. A Predictive Mechanism for Mercury Oxidation on Selective Catalytic Reduction Catalysts under Coal-Derived Flue Gas [J]. Journal of the Air & Waste Management Association, 2005 (55) 1866–1875.
DOI: 10.1080/10473289.2005.10464779
Google Scholar
[13]
Hocquel M. The Behaviour and Fate of Mercury in Coal-Fired Power Plants with Downstream Air Pollution Control Devices [D]. Forschr. -Ber. VDI Reihe Nr. 251. Düsseldorf: VDI Verlag, Germany, (2004).
Google Scholar
[14]
Senior C L. Oxidation of Mercury across Selective Catalytic Reduction Catalysts in Coal-Fired Power Plants [J]. Journal of the Air & Waste Management Association, 2006 (56) 23–31.
DOI: 10.1080/10473289.2006.10464437
Google Scholar
[15]
Gutberlet H, Schlu¨ter A, Licata A. SCR Impacts on Mercury Emissions from Coal-Fired Boilers [C]. The Electric Power Research Institute SCR Workshop, Memphis, TN, (2000).
Google Scholar
[16]
Eom Y, Jeon S H, Ngo T A, et al. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst [J]. Catalysis Letter, 2008 (121) 219–225.
DOI: 10.1007/s10562-007-9317-0
Google Scholar
[17]
Joshua R S, Christopher J Z, Bruce C. F, et al. SCR deactivation in a full-scale cofired utility boiler [J]. Fuel 2008 (87) 1341–1347.
DOI: 10.1016/j.fuel.2007.06.017
Google Scholar
[18]
Zhuang Y, Laumb J, Liggett R, et al. Impacts of acid gases on mercury oxidation across SCR catalyst [J]. Fuel Processing Technology, 2007 (88) 929-934.
DOI: 10.1016/j.fuproc.2007.03.010
Google Scholar
[19]
Kim M H, Ham S W, Lee J B. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process [J]. Applied Catalysis B: Environmental, 2010 (99) 272–278.
DOI: 10.1016/j.apcatb.2010.06.032
Google Scholar