[1]
Moridis G, Collett T S, Pooladi-Darvish M, et al. [J]. SPE Reservoir Evaluation & Engineering. 2011, 14(1): 76-112.
Google Scholar
[2]
Winters W J, Waite W F, Mason D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. 2007, 56(1-3): 127-135.
DOI: 10.1016/j.petrol.2006.02.003
Google Scholar
[3]
Hyodo M, Yoshimoto N, Kato A, et al. Shear Strength and Deformation of Methane Hydrate Bearing Sand with Fines[J]. Proc. of the 18th ICSMGE, Paris. (2013).
Google Scholar
[4]
Hyodo M, Li Y, Yoneda J, et al. [J]. Marine and Petroleum Geology. 2014, 51(0): 52-62.
Google Scholar
[5]
Masui A, Haneda H, Ogata Y, et al. Mechanical Properties of Sandy Sediment Containing Marine Gas Hydrates In Deep Sea Offshore Japan[C]. The International Society of Offshore and Polar Engineers, (2007).
Google Scholar
[6]
Masui A, Miyazaki K, Haneda H, et al. Mechanical Properties of Natural Gas Hydrate Bearing Sediments Retrieved from Eastern Nankai Trough[C]. Houston, Texas, USA: (2008).
DOI: 10.4043/19277-ms
Google Scholar
[7]
Miyazaki K, Masui A, Sakamoto Y, et al. Investigation of Deformation Mechanism For Methane Hydrate Sediment Based Upon Mechanical Properties In Unloading And Reloading Process Under Triaxial Compression[C]. The International Society of Offshore and Polar Engineers, (2009).
Google Scholar
[8]
Miyazaki K, Masui A, Tenma N, et al. Study On Mechanical Behavior For Methane Hydrate Sediment Based On Constant Strain-Rate Test And Unloading-Reloading Test Under Triaxial Compression[J]. 2010, 20(1).
Google Scholar
[9]
Miyazaki K, Masui A, Sakamoto Y, et al. Triaxial compressive properties of artificial methane-hydrate-bearing sediment[J]. 2011, 116(B6): B6102.
DOI: 10.1029/2010jb008049
Google Scholar
[10]
Miyazaki K, Masui A, Sakamoto Y, et al. Effect of Confining Pressure on Triaxial Compressive Properties of Artificial Methane Hydrate Bearing Sediments[C]. Houston, Texas, USA: (2010).
DOI: 10.4043/20721-ms
Google Scholar
[11]
Clayton C, Kingston E, Priest J, et al. Testing of pressurised cores containing gas hydrate from deep ocean sediments. [C]. (2008).
Google Scholar
[12]
Rees E V L. Methane Gas Hydrate Morphology and its Effect on the Stiffness and Damping of some Sediments[D]. University of Southampton, (2009).
Google Scholar
[13]
Priest J, Sultaniya A, Clayton C. Impact of hydrate formation and dissociation on the stiffness of a sand[C]. (2011).
Google Scholar
[14]
Sultaniya A K. Effect of dissociation on the properties of hydrate bearing sediments[D]. University of Southampton, (2011).
Google Scholar
[15]
Clayton C R I, Priest J A, Best A I. [J]. Geotechnique. 2005, 55(6): 423-434.
Google Scholar
[16]
Yu F, Song Y, Li Y, et al. Analysis of Stress-Strain Behavior And Constitutive Relation of Methane Hydrate-Bearing Sediments With Various Porosity[J]. 2011, 21(4).
Google Scholar
[17]
Li Y H, Song Y C, Liu W G, et al. Analysis of Mechanical Properties and Strength Criteria of Methane Hydrate-Bearing Sediments[J]. 2012, 22(4): 290-296.
Google Scholar
[18]
Li Y, Song Y, Liu W, et al. [J]. Journal of Petroleum Science and Engineering. 2013, 109(0): 45-50.
Google Scholar
[19]
Song Y, Zhu Y, Liu W, et al. [J]. Marine and Petroleum Geology. 2014, 51(0): 70-78.
Google Scholar
[20]
Wu E, Wei C, Wei H, et al. [J]. Rock and Soil Mechanics. 2013, 1: 8.
Google Scholar
[21]
Tan C P, Freij-Ayoub R, Clennell M B, et al. Managing Wellbore Instability Risk in Gas Hydrate-Bearing Sediments [C]. Jakarta, Indonesia: Society of Petroleum Engineers, (2005).
DOI: 10.2118/92960-ms
Google Scholar
[22]
Freij-Ayoub R, Tan C, Clennell B, et al. [J]. Journal of Petroleum Science and Engineering. 2007, 57(1–2): 209-220.
DOI: 10.1016/j.petrol.2005.10.011
Google Scholar
[23]
Tohidi B, Salehabadi M, Jin M, et al. Finite Element Modelling of Casing in Gas Hydrate Bearing Sediments (SPE-113819)[C]. (2008).
DOI: 10.2118/113819-ms
Google Scholar
[24]
Rutqvist J, Moridis G J. Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments[C]. Houston, Texas: (2007).
DOI: 10.4043/18860-ms
Google Scholar
[25]
Rutqvist J, G. J. M. Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments[C]. American Rock Mechanics Association, (2008).
Google Scholar
[26]
Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. 2012, 92–93(0): 65-81.
DOI: 10.1016/j.petrol.2012.06.004
Google Scholar
[27]
Kim J, Moridis G, Yang D, et al. Numerical Studies on Two-Way Coupled Fluid Flow and Geomechanics in Hydrate Deposits[J]. 2012, 17(2): 485-501.
DOI: 10.2118/141304-pa
Google Scholar
[28]
Rutqvist J, Moridis G J. [J]. SPE Journal. 2009, 14(2): 267-282.
Google Scholar
[29]
Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations[J]. 2011, 37(6): 739-750.
DOI: 10.1016/j.cageo.2010.08.006
Google Scholar
[30]
Kolditz O, Bauer S, Bilke L, et al. [J]. Environmental Earth Sciences. 2012, 67(2): 589-599.
Google Scholar
[31]
Ren H, Han L, Xu J, et al. Research on Marine Gas Hydrate Drilling Sampler of China[C]. International Society of Offshore and Polar Engineers, (2013).
Google Scholar