[1]
T. HAYAT, S. AFZAL, A. HENDI: Exact solution of electroosmotic flow in generalized Burgers fluid. Applied Mathematics and Mechanics, Vol. 32 (2011), no. 9, pp.1119-1126.
DOI: 10.1007/s10483-011-1486-6
Google Scholar
[2]
Wang Qing-he, Tong Deng-ke: Analysis of Burgers fluid flow in double cylinder rheometer. Chinese Journal of hydrodynamics, Vol. 25 (2010), no. 2, P. 183-189.
Google Scholar
[3]
C. Fetecau, Corina Fetecau: Decay of potential vortex in an Oldroyd-B fluid. Department of Mathematics, Technical University of Iasi, Iasi6600, Romania, Vol. 43 (2005), P. 340-351.
DOI: 10.1016/j.ijengsci.2004.08.013
Google Scholar
[4]
Constantin Fetecau, Corina Fetecau: The first problem of Stokes for an Oldroyd-B fluid. International Journal of Non-Linear Mechanics, Vol. 38 (2003), pp.1539-1544.
DOI: 10.1016/s0020-7462(02)00117-8
Google Scholar
[5]
C. Fetecau, T. Hayat, et al: Steady-state solutions for some simple flows of generalized Burgers fluids, International Journal of Non-Linear Mechanics, Vol. 41 (2006), pp.880-887.
DOI: 10.1016/j.ijnonlinmec.2006.06.004
Google Scholar
[6]
R. Penton, The transient for Stoke's oscillating plane: a solution in terms of tabulated functions, J. Fluid Mech. Vol. 31(1986), pp.819-825.
DOI: 10.1017/s0022112068000509
Google Scholar
[7]
M. E. Erdogan. A note on an unsteady flow of a viscous fluid due to an oscillating plane wall, Int. J. Non-Linear Mech. Vol. 35 (2000), pp.1-6.
DOI: 10.1016/s0020-7462(99)00019-0
Google Scholar
[8]
Stehfest H. Algorithm368 numerical inversion of Laplace transform [J]. Communications of ACM, Vol. 13(1970) no. 1, pp.47-49.
Google Scholar
[9]
Stehfest H. Remark on Algorithm368 numerical inversion of Laplace transform [J]. Communications of ACM, Vol. 13(1970) no. 10, pp.624-625.
DOI: 10.1145/355598.362787
Google Scholar