Multistage Amplifier Using Dual-Miller with Nulling-Resistor and Dual-Feedforward Structure

Article Preview

Abstract:

This paper designs a high-gain wide-bandwidth multistage amplifier by employing the dual-miller compensation with nulling-resistor and dual-feedforward compensation (DMCNR-DFC) in 0.35μm BCD process. The designed DMCNR-DFC multistage amplifier achieves well performance including gain-bandwidth product (GBW) and slew rate (SR). Simulation results show that the DMCNR-DFC multistage amplifier achieves a dc gain of about 121.1dB and GBW of about 6.1MHz with 52o phase margin.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1169-1172

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. G. H. Eschauzier, L. P. Kerklaan , J. H. Huijsing: A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE Journal of Solid-State Circuits, Vol. 27 ( 1992), pp.1709-1717.

DOI: 10.1109/4.173096

Google Scholar

[2] L. Zhang, Z. Chang, Y. Wang, Z. Yu: Current-reuse single miller feedforward compensation for multi-stage amplifiers. Electronics Letters, Vol. 49 (2012), pp.94-96.

DOI: 10.1049/el.2012.3674

Google Scholar

[3] P. Xiao, W. Sansen, L. G. Hou, J. H. Wang, W. C. Wu: Impedance adapting compensation for low-power multistage amplifiers. IEEE Journal of Solid-State Circuits, Vol. 46 (2011), pp.445-451.

DOI: 10.1109/jssc.2010.2090088

Google Scholar

[4] S.A. Aamir, P. Harikumar, J. J. Wikner: Frequency compensation of high-speed, low-voltage CMOS multistage amplifiers. 2013 IEEE International Symposium on Circuits and Systems, Beijing, pp.381-384.

DOI: 10.1109/iscas.2013.6571860

Google Scholar

[5] S. Guo, H. Lee: Dual active-capacitive- feedback compensation for low power large- capacitive-load three-stage amplifiers. IEEE Journal of Solid-State Circuits, Vol. 46 (2011), pp.452-464.

DOI: 10.1109/jssc.2010.2092994

Google Scholar