Equivalent Integral Equations of the Static Schrödinger Equation by Variation of Constants Method

Article Preview

Abstract:

As a milestone method, the inverse scattering transformation is also known as the nonlinear Fourier transformation for solving nonlinear partial differential equations analytically. The equivalent integral equations play a crucial role for the inverse scattering transformation. In this paper, the equivalent integral equations of the static Schrödinger equation are derived by the variation of constants method. The derivation of the equivalent integral equations provides with a necessary help for the beginners to study the inverse scattering transformation method in soliton theory.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

1712-1715

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, (1991).

Google Scholar

[2] M.R. Miurs, Bäcklund Transformation, Springer-Verlag, Berlin, (1978).

Google Scholar

[3] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27 (1971) 1192-1194.

DOI: 10.1103/physrevlett.27.1192

Google Scholar

[4] M.L. Wang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A, 213 (1996) 279-287.

DOI: 10.1016/0375-9601(96)00103-x

Google Scholar

[5] S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics Letters A, 289 (2001) 69-74.

DOI: 10.1016/s0375-9601(01)00580-1

Google Scholar

[6] E.G. Fan, Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Physics Letters A, 300 (2002) 243-249.

DOI: 10.1016/s0375-9601(02)00776-4

Google Scholar

[7] S. Zhang, T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, Journal of Physics A Mathematical and General, 40 (2007) 227-248.

DOI: 10.1088/1751-8113/40/2/003

Google Scholar

[8] C.S. Garder, J.M. Greene, M.D. Kruskal, R.M. Miura, Korteweg-de Vires equation and generalizations, VI. Method for exact solution, Communications on Pure and Applied Mathematics, 27 (1974) 97-133.

DOI: 10.1002/cpa.3160270108

Google Scholar

[9] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Communications on Pure and Applied Mathematics, 21 (1968) 467-490.

DOI: 10.1002/cpa.3160210503

Google Scholar

[10] V.E. Zakharov, A.B. Shabat, Interaction between solitons in a stable medium, Soviet Physics–JETP, 34 (1972) 62-69.

Google Scholar

[11] M. Wadati, The modified Korteweg-de Vries equation, Journal of the Physical Society of Japan, 32 (1973) 1289-1296.

DOI: 10.1143/jpsj.34.1289

Google Scholar

[12] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the sine-Gordon equation, Physical Review Letters, 30 (1973) 1262-1264.

DOI: 10.1103/physrevlett.30.1262

Google Scholar

[13] H. Flaschka, On the Toda lattice, II, Progress of Theoretical Physics, 51 (1974) 703-716.

DOI: 10.1143/ptp.51.703

Google Scholar

[14] M.J. Ablowitz, J.F. Ladik, Nonlinear differential-difference equations, Journal of Mathematical Physics, 16 (1975) 598-603.

DOI: 10.1063/1.522558

Google Scholar

[15] A.I. Nachman, M.J. Ablowitz, A multidimensional inverse scattering method, Studies in Applied Mathematics, 71 (1984) 243-250.

DOI: 10.1002/sapm1984713243

Google Scholar

[16] C.S. Garder, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-de Vries equation, Physical Review Letters, 19 (1965) 1095-1097.

DOI: 10.1103/physrevlett.19.1095

Google Scholar

[17] D.Y. Chen, Introduction to Soliton, Science Press, Beijing, (2006).

Google Scholar

[18] P. Hartman, Ordinary Differential equations, John Wiley & Sons Inc., Now York, (1964).

Google Scholar