[1]
E. M. De Jager, F. R. Jiang. The theory of singular perturbation, North Holland Publishing Co., Amsterdam, (1996).
Google Scholar
[2]
R.Z. Khasminskii, G. Yin. Limit behavior of two-time-scale diffusions revisited. Journal of Differential Equations 212 (2005) 85–113.
DOI: 10.1016/j.jde.2004.08.013
Google Scholar
[3]
J. Mo. A kind of four order semilinear singular perturbation solution. Applied Mathematics and Mechanics 30 (2009) 1369-1373.
Google Scholar
[4]
A. Kaushik. Singular perturbation analysis of bistable differential equation arising in the nerve pulse propagation. Nonlinear Anal. Real World Appl. 9 (2008) 2106–2127.
DOI: 10.1016/j.nonrwa.2007.06.014
Google Scholar
[5]
J. Mo, H. Wang. Generalized Lotke-Vollterra ecological model of nonlinear singularly perturbed approximate solution. Journal of Ecology 27 (2007) 4366-4370.
Google Scholar
[6]
J. Shen, M. Han. Canard solution and its asymptotic approximation in a second-order nonlinear singularly perturbed boundary value problem with a turning point. Commun Nonlinear Sci Numer Simulat 19 (2014) 2632-2643.
DOI: 10.1016/j.cnsns.2013.12.033
Google Scholar
[7]
S. Gowrisankar, S. Natesan. The parameter uniform numerical method for singularly perturbed parabolic reaction-diffusion problems on equidistributed grids. Applied Mathematics Letters 26 (2013) 1053-1060.
DOI: 10.1016/j.aml.2013.05.017
Google Scholar
[8]
C. Wang, X. Hu, Existence and uniqueness of bounded solution and periodic solution of reaction-diffusion equation with time delay. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), 17 (2005).
Google Scholar
[9]
C. Wang, Periodic solution of prey predator model with diffusion and distributed delay effects. Journal of Chongqing University of Posts and Telecommunication (Natural Science Edition), . 18 (2006) 409–412, (2006).
Google Scholar