Algebraic Immunity, Correlation Immunity and other Cryptographic Properties of Quadratic Rotation Symmetric Boolean Functions

Article Preview

Abstract:

Boolean functions with a variety of secure cipher properties are the key factors to design cryptosystem with the ability to resist multiple cipher attacks and good safety performance. In this paper, using the derivative of the Boolean functions and the e-derivative defined by ourselves as the main research tools, we study algebraic immunity, correlation immunity and other cryptographic properties of the quadratic rotation symmetric Boolean functions. We determine the quadratic rotation symmetric Boolean functions which are H Boolean functions, and the range of weight distribution of the quadratic rotation symmetry H Boolean functions. Besides, we get the compatibility among propagation, balance, correlation immunity and algebraic immunity of the quadratic rotation symmetry H Boolean functions, and also focus on the relationship of balance, correlation immunity and dimension. Furthermore, we check the existence of the cubic rotation symmetry H Boolean functions, and obtain the relationship between existence and dimension of the cubic rotation symmetry H Boolean functions. Moreover, we obtain a more convenient method for solving annihilator. Such researches are important in cryptographic primitive designs, and have significance and role in the theory and application range of cryptosystems.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

2593-2598

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pieprzyk, J.; Qu, C.: Fast hashing and rotation-symmetric functions. Journal of Universal Computer Science, 1999, 5, (1), pp.20-31.

Google Scholar

[2] Cusick, T.W.; Stanica, P.: Fast evaluation, weights and nonlinearity of rotation-symmetric functions. Discrete mathematics, 2002, 258, (1-3), pp.289-301.

DOI: 10.1016/s0012-365x(02)00354-0

Google Scholar

[3] Stanica, P.; Maitra, S.; Clark, J.: Results on rotation symmetric bent and correlation immune Boolean functions. FSE 2004, New Delhi, India, 2004, LNCS, 3017, pp.161-177.

DOI: 10.1007/978-3-540-25937-4_11

Google Scholar

[4] Sarkar, S.; Maitra, S.: Construction of rotation symmetric Boolean functions with optimal algebraic immunity. Computacion y Sistemas, 2009, 12, (3), pp.267-284.

Google Scholar

[5] Sarkar, S.; Maitra, S.: Construction of rotation symmetric Boolean functions on odd number of variables with maximum algebraic immunity. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 2007, Bangalore, India, 2007, LNCS, 4851, pp.271-280.

DOI: 10.1007/978-3-540-77224-8_32

Google Scholar

[6] Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Construction of rotation symmetric Boolean functions with maximum algebraic immunity. Cryptology and Network Security 2009, Kanazawa, Japan, 2009, LNCS, 5888, pp.402-412.

DOI: 10.1007/978-3-642-10433-6_27

Google Scholar

[7] Stanica, P., Maitra, S.: Rotation symmetric Boolean functions-Count and cryptographic properties, Discrete Applied Mathematics, 2008, 156, (10), pp.1567-1580.

DOI: 10.1016/j.dam.2007.04.029

Google Scholar

[8] Cusick, T.; Padgett, D.: A recursive formula for weights of Boolean rotation symmetric functions. Discrete Applied Mathematics, 2012, 160, (4-5), pp.391-397.

DOI: 10.1016/j.dam.2011.11.006

Google Scholar

[9] Fu, S.; Qu, L.; Li, C.; Sun, B.: Balanced rotation symmetric Boolean functions with maximum algebraic immunity. IET Information Security, 2011, 5, (2), pp.93-99.

DOI: 10.1049/iet-ifs.2010.0048

Google Scholar

[10] Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Balanced 2p-variable rotation symmetric Boolean functions with maximum algebraic immunity. Applied Mathematics Letters, 2011, 24, (12), p.2093-(2096).

DOI: 10.1016/j.aml.2011.06.004

Google Scholar

[11] Meng, Q.; Chen, L.; Fu, F.: Construction of Boolean functions with maximum algebraic immunity. Journal of Software, 2010, 21, (7), pp.1758-1767. (In Chinese).

Google Scholar

[12] Maximov, A.; Hell, M.; Maitra, S.: Plateaued rotation symmetric boolean functions on odd number of variables. First Workshop on Boolean Functions: Cryptography and Applications, Rouen, France, 2005, pp.83-104.

Google Scholar

[13] Elsheh, E.: On the linear structures of cryptographic rotation symmetric Boolean functions. The 9th International Conference for Young Computer Scientists, Zhangjiajie, Hunan, China, 2008, p.2085-(2089).

DOI: 10.1109/icycs.2008.479

Google Scholar

[14] Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Construction of even-variable rotation symmetric Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2013, 56, (3), pp.1-9.

DOI: 10.1007/s11432-011-4350-4

Google Scholar

[15] Dalai, D.; Maitra. S.; Sarkar, S.: Results on rotation symmetric bent functions. Proceedings of the 2nd International Workshop on Boolean Functions: Cryptography and Applications, Rouen, France, 2006, pp.137-156.

Google Scholar

[16] Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme. IRE Transactions on Information Theory, 1954, 4, (4), pp.38-49.

DOI: 10.1109/tit.1954.1057465

Google Scholar

[17] Akers, S. B.: On a theory of Boolean functions. Journal of the Society for Industrial and Applied Mathematics, 1959, 7, (4), pp.487-498.

Google Scholar

[18] Wen, Q.; Niu, X.; Yang, Y.: The Boolean Functions in Modern cryptology. Science Press, Beijing, China (2000). (In Chinese).

Google Scholar

[19] Li, W.; Wang, Z.; Huang, J.: The e-derivative of boolean functions and its application in the fault detection and cryptographic system. Kybernetes, 2011, 40, (5-6), pp.905-911.

DOI: 10.1108/03684921111142458

Google Scholar

[20] Ding, Y.; Wang, Z.; Ye, J.: Initial-value problem of the Boolean function's primary function and its application in cryptographic system. Kybernetes, 2010, 39, (6), pp.900-906.

DOI: 10.1108/03684921011046663

Google Scholar

[21] Huang, J.; Wang, Z.: The relationship between correlation immune and weight of H Boolean functions. Journal on Communications, 2012, 33, (2), pp.110-118. (In Chinese).

Google Scholar

[22] Huang, J.; Zhang, C.; Liu, Y.: Some cryptographic properties of rotation symmetric Boolean functions. Applied Mechanics and Materials, 2013, 321-324, pp.2704-2707.

DOI: 10.4028/www.scientific.net/amm.321-324.2704

Google Scholar