[1]
Pieprzyk, J.; Qu, C.: Fast hashing and rotation-symmetric functions. Journal of Universal Computer Science, 1999, 5, (1), pp.20-31.
Google Scholar
[2]
Cusick, T.W.; Stanica, P.: Fast evaluation, weights and nonlinearity of rotation-symmetric functions. Discrete mathematics, 2002, 258, (1-3), pp.289-301.
DOI: 10.1016/s0012-365x(02)00354-0
Google Scholar
[3]
Stanica, P.; Maitra, S.; Clark, J.: Results on rotation symmetric bent and correlation immune Boolean functions. FSE 2004, New Delhi, India, 2004, LNCS, 3017, pp.161-177.
DOI: 10.1007/978-3-540-25937-4_11
Google Scholar
[4]
Sarkar, S.; Maitra, S.: Construction of rotation symmetric Boolean functions with optimal algebraic immunity. Computacion y Sistemas, 2009, 12, (3), pp.267-284.
Google Scholar
[5]
Sarkar, S.; Maitra, S.: Construction of rotation symmetric Boolean functions on odd number of variables with maximum algebraic immunity. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes 2007, Bangalore, India, 2007, LNCS, 4851, pp.271-280.
DOI: 10.1007/978-3-540-77224-8_32
Google Scholar
[6]
Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Construction of rotation symmetric Boolean functions with maximum algebraic immunity. Cryptology and Network Security 2009, Kanazawa, Japan, 2009, LNCS, 5888, pp.402-412.
DOI: 10.1007/978-3-642-10433-6_27
Google Scholar
[7]
Stanica, P., Maitra, S.: Rotation symmetric Boolean functions-Count and cryptographic properties, Discrete Applied Mathematics, 2008, 156, (10), pp.1567-1580.
DOI: 10.1016/j.dam.2007.04.029
Google Scholar
[8]
Cusick, T.; Padgett, D.: A recursive formula for weights of Boolean rotation symmetric functions. Discrete Applied Mathematics, 2012, 160, (4-5), pp.391-397.
DOI: 10.1016/j.dam.2011.11.006
Google Scholar
[9]
Fu, S.; Qu, L.; Li, C.; Sun, B.: Balanced rotation symmetric Boolean functions with maximum algebraic immunity. IET Information Security, 2011, 5, (2), pp.93-99.
DOI: 10.1049/iet-ifs.2010.0048
Google Scholar
[10]
Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Balanced 2p-variable rotation symmetric Boolean functions with maximum algebraic immunity. Applied Mathematics Letters, 2011, 24, (12), p.2093-(2096).
DOI: 10.1016/j.aml.2011.06.004
Google Scholar
[11]
Meng, Q.; Chen, L.; Fu, F.: Construction of Boolean functions with maximum algebraic immunity. Journal of Software, 2010, 21, (7), pp.1758-1767. (In Chinese).
Google Scholar
[12]
Maximov, A.; Hell, M.; Maitra, S.: Plateaued rotation symmetric boolean functions on odd number of variables. First Workshop on Boolean Functions: Cryptography and Applications, Rouen, France, 2005, pp.83-104.
Google Scholar
[13]
Elsheh, E.: On the linear structures of cryptographic rotation symmetric Boolean functions. The 9th International Conference for Young Computer Scientists, Zhangjiajie, Hunan, China, 2008, p.2085-(2089).
DOI: 10.1109/icycs.2008.479
Google Scholar
[14]
Fu, S.; Li, C.; Matsuura, K.; Qu, L.: Construction of even-variable rotation symmetric Boolean functions with maximum algebraic immunity. Science in China Series F: Information Sciences, 2013, 56, (3), pp.1-9.
DOI: 10.1007/s11432-011-4350-4
Google Scholar
[15]
Dalai, D.; Maitra. S.; Sarkar, S.: Results on rotation symmetric bent functions. Proceedings of the 2nd International Workshop on Boolean Functions: Cryptography and Applications, Rouen, France, 2006, pp.137-156.
Google Scholar
[16]
Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme. IRE Transactions on Information Theory, 1954, 4, (4), pp.38-49.
DOI: 10.1109/tit.1954.1057465
Google Scholar
[17]
Akers, S. B.: On a theory of Boolean functions. Journal of the Society for Industrial and Applied Mathematics, 1959, 7, (4), pp.487-498.
Google Scholar
[18]
Wen, Q.; Niu, X.; Yang, Y.: The Boolean Functions in Modern cryptology. Science Press, Beijing, China (2000). (In Chinese).
Google Scholar
[19]
Li, W.; Wang, Z.; Huang, J.: The e-derivative of boolean functions and its application in the fault detection and cryptographic system. Kybernetes, 2011, 40, (5-6), pp.905-911.
DOI: 10.1108/03684921111142458
Google Scholar
[20]
Ding, Y.; Wang, Z.; Ye, J.: Initial-value problem of the Boolean function's primary function and its application in cryptographic system. Kybernetes, 2010, 39, (6), pp.900-906.
DOI: 10.1108/03684921011046663
Google Scholar
[21]
Huang, J.; Wang, Z.: The relationship between correlation immune and weight of H Boolean functions. Journal on Communications, 2012, 33, (2), pp.110-118. (In Chinese).
Google Scholar
[22]
Huang, J.; Zhang, C.; Liu, Y.: Some cryptographic properties of rotation symmetric Boolean functions. Applied Mechanics and Materials, 2013, 321-324, pp.2704-2707.
DOI: 10.4028/www.scientific.net/amm.321-324.2704
Google Scholar