[1]
Massey, J. L.: Shift-register synthesis and BCH decoding, IEEE Trans Inform Theory, 1969, 15, (1), pp.122-127.
DOI: 10.1109/tit.1969.1054260
Google Scholar
[2]
Rueppel, R. A., Staffelbach, O. J.: Products of linear recurring seguences with maximum complexity, IEEE Trans Inform Theory, 1987, 33, (1), pp.124-131.
DOI: 10.1109/tit.1987.1057268
Google Scholar
[3]
Rueppel, R. A.: Analysis and Design of stream Ciphers, (Springer-Verlag, 1986).
Google Scholar
[4]
Ding, C., Xiao, G., Shan, W.: The stability theory of stream ciphers, (Springer-Verlag, 1991).
Google Scholar
[5]
Blaser, W., and Heinzmann, P.: New Cryptographic Device with High Secourity Using Public Key Distribution,. Proc. IEEE Student Paper Contest 1979-1980, 1982, pp.145-153.
Google Scholar
[6]
Siegenthaler, T.: Correlation immunity of nonlinear combining functions for cryptographic applications, IEEE Transactions on Information Theory, 1984, IT-30, (5), pp.776-780.
DOI: 10.1109/tit.1984.1056949
Google Scholar
[7]
Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Ciphertext only, IEEE Transactions on Information Theory, 1985, C-34, (1), pp.81-85.
DOI: 10.1109/tc.1985.1676518
Google Scholar
[8]
Webster, A. F., and Tavares, S. E.: On the design of S-boxes'. Advances in Cryptology-CRYPTO, 85, Santa Barbara, California, USA, 1986, LNCS, 218, pp.523-534.
DOI: 10.1007/3-540-39799-x_41
Google Scholar
[9]
Forre, R.: The strict avalanche criterion: spectral properties of Boolean functions and an extended definition'. Advances in Cryptology-CRYPTO, 88, 1990, LNCS, 403, pp.450-468.
DOI: 10.1007/0-387-34799-2_31
Google Scholar
[10]
Courtois, N., and Meier, W.: Algebraic attacks on stream ciphers with linear feedback,. Advances in Cryptology-EUROCRYPT 2003, Warsaw, 2003, LNCS, 2656, pp.345-359.
DOI: 10.1007/3-540-39200-9_21
Google Scholar
[11]
Meier, W., Pasalic, E., and Carle, C.: Algebraic attacks and decomposition of Boolean functions,. Advances in Cryptology-EUROCRYPT 2004, Interlaken, 2004, LNCS, 3027, pp.474-491.
DOI: 10.1007/978-3-540-24676-3_28
Google Scholar
[12]
Carlet, C., Dalai, D. K., Gupta, K. C., Maitra, S.: Algebraic immunity for cryptographically significant Boolean functions: analysis and construction, IEEE Transactions on Information Theory, 2006, 52, (7), pp.3105-3121.
DOI: 10.1109/tit.2006.876253
Google Scholar
[13]
Wen, Q., Niu, X., and Yang, Y.: The Boolean Functions in Modern cryptology, (Science Press of China, 2000). (In Chinese).
Google Scholar
[14]
Akers, S. B.: On a theory of Boolean functions, Journal of the Society for Industrial and Applied Mathematics, 1959, 7, (4), pp.487-498.
Google Scholar
[15]
Reed, I. S.: A class of multiple-error-correcting codes and the decoding scheme, IRE Transactions on Information Theory, 1954, 4, (4), pp.38-49.
DOI: 10.1109/tit.1954.1057465
Google Scholar
[16]
Huang, J., Wang, Z.: The relationship between correlation immune and weight of H Boolean functions, Journal on Communications, 2012, 33, (2), pp.110-118. (In Chinese).
Google Scholar
[17]
Li, W., Wang, Z., Huang, J.: The e-derivative of boolean functions and its application in the fault detection and cryptographic system, Kybernetes, 2011, 40, (5-6), pp.905-911.
DOI: 10.1108/03684921111142458
Google Scholar
[18]
Ding, Y., Wang, Z., Ye, J.: Initial-value problem of the Boolean function's primary function and its application in cryptographic system, Kybernetes, 2010, 39, (6), pp.900-906.
DOI: 10.1108/03684921011046663
Google Scholar
[19]
Huang, J., Wang, Z., Zhang, J.: Effects of e-derivative on algebraic immunity, correlation immunity and algebraic degree of H Boolean functions , Applied Mechanics and Materials, 2013, 411-414, pp.45-48.
DOI: 10.4028/www.scientific.net/amm.411-414.45
Google Scholar