Research Progress of Tungsten Nanorods and Nanoplatelets

Article Preview

Abstract:

Because of the characteristics of both one dimensional nanostructure and excellent physical and chemical properties, the kinds of novel nanomaterials-tungsten carbide nanowires, have important academic significance and practical meaning. The research development of one-dimensional nanostructured tungsten carbide is reviewed. The production methods of one-dimensional nanostructured tungsten carbide, such as nanotubes, nanorods, nanowires and nanoneedles by thermal decomposition technique, vapour deposition technique, magnetron sputtering technique, Eruptive heating technique and template technique respectively are systematically introduced. This paper summarizes the growth mechanisms and the problems involved in the existing synthesis methods. The research tendency is also forecasted.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

552-555

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kosolapva.T. Ya. Carbides Properties, Production, and Application., Plenum Press: New York, (1971).

Google Scholar

[2] Schwartzkopf, P.; Kieffier, R. Refractory Hard metals Borides, Carbides, Nitrides, Silicides. The MacMillan Company: New York, (1953).

Google Scholar

[3] Levy, R.; Boudardt, M. Science 1973, 181, 547.

Google Scholar

[4] Xiao. T, Hanif. A, York. E. P. A, Sloan. J, Green.H. L.M. Phys Chem. Chem. Phys. 2002, 4, 3522.

Google Scholar

[5] Bendelt, L. H. Cuthill, J. R. Mealister, N. Erickson, N. E. Science 1974, 184, 563.

Google Scholar

[6] Noston, J. E, Laramore. G. E, Park, R. L. Science 1974, 185, 285.

Google Scholar

[7] Wang S J , Chen C H , Chang S C , et al. Appl Phys Lett , 2004 , 85 (12) : 2358-2360.

Google Scholar

[8] Arie T, Akita A, Nakayama Y. J Phys D: Appl Phys, 1998 , 31 : 49 -51.

Google Scholar

[9] li ZHANG.

Google Scholar

[10] Sadangi R K, McCandlish L E, Kear B H. International Journal of Powder Metallurgy, 1999, 35(1): 27- 33.

Google Scholar

[11] Wang G W, Zhao Y P, Yang G T. Materials & Design, 2004, 25(6): 453- 457.

Google Scholar

[12] Sangaraju S, David S, Aharon G. J Physical Chemistry B, 2005, 109(41): 19056- 19059.

Google Scholar

[13] Swati V P, Vilas G P, Aharon G. Advancsd Materials, 2006, 18(15): 2023- (2027).

Google Scholar

[14] Takayuki A, Seiji A, Yoshikazu N. J. Phys. D: Appl Phys, 1998, 31(14): 49- 51.

Google Scholar

[15] Zheng H J, Ma C A, WangW, et al. Electrochemistry Communications, 2006, 8(6): 977- 981.

Google Scholar

[16] Oliveira F A C, Granier B, Badid J M, etal. International Journal of Refractory Metals &Hard Materials, 2007, 25(4): 351- 357.

Google Scholar

[17] Nicolas K, Barbara P, Valerie K. Materials Letters, 2006,60 (13/14): 1774- 1777.

Google Scholar

[18] Shi X L, Yang H, Sun P, etal. Carbon, 2007, 45(9): 1735- 1742.

Google Scholar

[19] Wu Y Y, Yang P D. J Am Chem Soc, 2001, 123 (13): 3165 3166.

Google Scholar

[20] Pan Z W, Dai Z R, Wang Z L. Science, 2001 (291): 19471949.

Google Scholar