Effect of Post-Weld Heat Treatment on Carbide Precipitation and Impact Properties of Coarse-Grained Heat-Affected Zone of Q690 Steel

Article Preview

Abstract:

The effect of post-weld heat treatment (PWHT) on carbide precipitation and impact properties of coarse-grained heat-affected zone (CGHAZ) of Q690 Steel was studied in this paper. Carbide particles precipitated primarily at prior austenite grain boundaries and martensitic lath boundaries. When the PWHT temperature is 520–570 °C, temper embrittlement occurs. This temperature range is also where the number of carbide particles per unit area at grain boundaries reaches its maximum. The high number of particles per unit area increases the rate of crack initiation at grain boundaries under rapid loading; linking of microcracks along grain boundaries which are already weakened by impurity segregation results in TE and intergranular fracture.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 989-994)

Pages:

576-580

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Gianetto, J.E.M. Braid, J.T. Bowker, W.R. Tyson, J. Offshore Mech. Arct. Eng. 119(1997) 134-144.

Google Scholar

[2] E. Bonnevie, G. Ferrière, A. Ikhlef, D. Kaplan, J.M. Orain, Mater. Sci. Eng., A. 385(2004) 352-358.

Google Scholar

[3] Sangho Kim, Sunghak Lee, Young-Roc Im, et al, Metall. Mater. Trans. A. 32(2001) 903-911.

Google Scholar

[4] Fukuhisa MATSUDA, Kenji IKEUCHI, Yasuto FUKADA, et al, Trans. JWRI. 24(1995) 1-24.

Google Scholar

[5] I. de S. Bott, J. C. G. Teixeira, J. Mater. Eng. Perform. 8(1999) 683-692.

Google Scholar

[6] K.S. Kweon, J.H. Kim, J.H. Hong, C.H. Lee, Sci. Technol. Weld. Joining. 5(2000) 161-167.

Google Scholar

[7] Gareth Thomas, Metall. Trans. A. 9(1978) 439-450.

Google Scholar

[8] N. Bandyopadhyay, C. J. McMahon, Metall. Trans. A. 14(1983) 1313-1325.

Google Scholar

[9] V. V. Zabil'skii, Met. Sci. Heat Treat. 29(1987) 32-42.

Google Scholar

[10] H. Ohtani, H. C. Feng, C. J. McMahon, Metall. Trans. 5(1974) 516-518.

Google Scholar

[11] A. M. Morozov, V. A. Nikolaev, A. M. Parshin, V. V. Rybin, Met. Sci. Heat Treat. 19(1977) 461-465.

DOI: 10.1007/bf00713083

Google Scholar

[12] Henry K. Obermeyer, George Krauss, J. Heat Treat. 1(1980) 31-39.

Google Scholar

[13] Sunghak Lee, Byung Chun Kim, Dongil Kwon, Metall. Trans. A. 24(1993) 1133-1141.

Google Scholar

[14] V. Biss, R. L. Cryderman, Metall. Mater. Trans. B. 2(1971) 2267-2276.

Google Scholar

[15] R.M. Alé , J.M.A. Rebello , J. Charlier , Mater. Charact. 37(1996) 89-93.

Google Scholar

[16] K.S. Kweon, J.H. Kim, J.H. Hong, et al, Sci. Technol. Weld. Joining. 5(2000) 161-167.

Google Scholar

[17] Ivan Hrivnak, Fukuhisa Matsuda, Zhonglin Li, et al, Trans. JWRI. 21(1992) 241-250.

Google Scholar

[18] C.L. Davis, J.E. King, Metall. Mater. Trans. A. 25(1994) 563-573.

Google Scholar

[19] H. Kwon, C. H. Kim, J. Mater. Sci. 18(1983) 3671-3678.

Google Scholar

[20] T. M. F. Ronald, Metall. Trans. 1(1970) 2583-2592.

Google Scholar