[1]
Ratna Prasad A V, Mohana Rao K. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Materials & Design, 2011, 32(8): 4658-4663.
DOI: 10.1016/j.matdes.2011.03.015
Google Scholar
[2]
George J, Sreekala M S, Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science, 2001, 41(9): 1471-1485.
DOI: 10.1002/pen.10846
Google Scholar
[3]
Shalwan A, Yousif B F. In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design, 2013, 48: 14-24.
DOI: 10.1016/j.matdes.2012.07.014
Google Scholar
[4]
Faruk O, Bledzki A K, Fink H P, et al. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 2012, 37(11): 1552-1596.
DOI: 10.1016/j.progpolymsci.2012.04.003
Google Scholar
[5]
Lu S R, Ling R H, Luo C X, et al. Sisal fibre/polypropylene composites modified with carboxyl terminated hyperbranched polymer. Plastics, Rubber and Composites, 2013, 42(9): 361-366.
DOI: 10.1179/1743289812y.0000000040
Google Scholar
[6]
Megiatto Jr J D, Silva C G, Ramires E C, et al. Thermoset matrix reinforced with sisal fibers: effect of the cure cycle on the properties of the biobased composite. Polymer Testing, 2009, 28(8): 793-800.
DOI: 10.1016/j.polymertesting.2009.07.001
Google Scholar
[7]
Jeencham R, Suppakarn N, Jarukumjorn K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 2014, 56: 249-253.
DOI: 10.1016/j.compositesb.2013.08.012
Google Scholar
[8]
Lu S R, Ling R H, Luo C X, et al. Sisal fibre/polypropylene composites modified with carboxyl terminated hyperbranched polymer. Plastics, Rubber and Composites, 2013, 42(9): 361-366.
DOI: 10.1179/1743289812y.0000000040
Google Scholar
[9]
Kaewkuk S, Sutapun W, Jarukumjorn K. Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 2013, 45(1): 544-549.
DOI: 10.1016/j.compositesb.2012.07.036
Google Scholar
[10]
Han S, Ren K, Geng C, et al. Enhanced interfacial adhesion via interfacial crystallization between sisal fiber and isotactic polypropylene: direct evidence from single – fiber fragmentation testing. Polymer International, 2014, 63(4): 646-651.
DOI: 10.1002/pi.4551
Google Scholar
[11]
Jin – Ping Q, Li – Ming L, Bin T, et al. Effect of dynamical converging channels on fiber organization and damage during vane extrusion of sisal fiber – reinforced polypropylene composites. Polymer Composites, 2012, 33(2): 185-191.
DOI: 10.1002/pc.21261
Google Scholar
[12]
Rauwendaal C, Osswald T, Gramann P, et al. Design of dispersive mixing devices. International Polymer Processing, 1999, 14(1): 28-34.
DOI: 10.3139/217.1524
Google Scholar
[13]
Folgar F, Tucker C L. Orientation behavior of fibers in concentrated suspensions. Journal of Reinforced Plastics and Composites, 1984, 3(2): 98-119.
DOI: 10.1177/073168448400300201
Google Scholar
[14]
Chiba K, Nakamura K. Numerical solution of fiber suspension flow through a complex channel. Journal of non-newtonian fluid mechanics, 1998, 78(2): 167-185.
DOI: 10.1016/s0377-0257(98)00067-6
Google Scholar
[15]
Advani S G, Tucker III C L. The use of tensors to describe and predict fiber orientation in short fiber composites. Journal of Rheology, 1987, 31(8): 751-784.
DOI: 10.1122/1.549945
Google Scholar
[16]
Yang Z, Chen R, Zhao Y, et al. Preparation and mechanical properties of pithecellobium clypearia benth fibre/polypropylene composites processed by vane extruder. Journal of Reinforced Plastics and Composites, 2014, 33(2): 150-165.
DOI: 10.1177/0731684413506762
Google Scholar
[17]
Qu, J. P. Can. Pat. CN200810026054X, (2009).
Google Scholar
[18]
Qu J P, Yang Z T, Yin X C, et al. Characteristics study of polymer melt conveying capacity in vane plasticization extruder. Polymer-Plastics Technology and Engineering, 2009, 48(12): 1269-1274.
DOI: 10.1080/03602550903204121
Google Scholar
[19]
Qu J P, Chen H Z, Liu S R, et al. Morphology study of immiscible polymer blends in a vane extruder. Journal of Applied Polymer Science, 2013, 128(6): 3576-3585.
DOI: 10.1002/app.38573
Google Scholar
[20]
Qu J P, Zhang G Z, Chen H Z, et al. Solid conveying in vane extruder for polymer processing: effects on pressure establishment. Polymer Engineering & Science, 2012, 52(10): 2147-2156.
DOI: 10.1002/pen.23176
Google Scholar
[21]
Wu C, Jia S, Chen R, et al. Composites of sisal fiber/polypropylene based on novel vane extruder: Effect of interface and damage on mechanical properties. Journal of Reinforced Plastics and Composites, 2013, 32(24): 1907-(1915).
DOI: 10.1177/0731684413498433
Google Scholar