[1]
K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem. 405 (2013) 3753-3771.
DOI: 10.1007/s00216-012-6578-2
Google Scholar
[2]
J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2008) 814-825.
Google Scholar
[3]
G. Yang, L. Li, R.K. Rana, J. Zhu, Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2, Carbon 61(2013) 357-366.
DOI: 10.1016/j.carbon.2013.05.016
Google Scholar
[4]
J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events, J. Am. Chem. Soc. 126 (2004) 3010-3011.
DOI: 10.1021/ja031723w
Google Scholar
[5]
J. Das, M.A. Aziz, H. Yang, A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels, J. Am. Chem. Soc.128 (2006) 16022-16023.
DOI: 10.1021/ja0672167
Google Scholar
[6]
J. Tang, D. Tang, B. Su, J. Huang, B. Qiu, G. Chen, Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts, Biosens. Bioelectron. 26 (2011) 3219-3226.
DOI: 10.1016/j.bios.2010.12.029
Google Scholar
[7]
R. Polsky, R. Gill, L. Kaganovsky, I. Willner, Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules, Anal. Chem. 78 (2006) 2268-2271.
DOI: 10.1021/ac0519864
Google Scholar
[8]
J. Das, H. Yang, Enhancement of electrocatalytic activity of DNA-conjugated gold nanoparticles and its application to DNA detection, J. Phys. Chem. C 113 (2009) 6093-6099.
DOI: 10.1021/jp809850f
Google Scholar
[9]
T. Li, Z. Si, L. Hu, H. Qi, M. Yang, Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-α, Sens. Actuators, B 171-172 (2012) 1060-1065.
DOI: 10.1016/j.snb.2012.06.034
Google Scholar
[10]
C. Leng, J. Wu, Q. Xu, G. Lai, H. Ju, F. Yan, A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label, Biosens. Bioelectron. 27 (2011) 71-76.
DOI: 10.1016/j.bios.2011.06.017
Google Scholar
[11]
J. Wang, Nanomaterial-based electrochemical biosensors, Analyst, 130 (2005) 421-426.
Google Scholar
[12]
J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis 17 (2005) 7-14.
Google Scholar
[13]
M. Pumera, S. Sanchez, I. Ichinose, J. Tang, Electrochemical nanobiosensors, Sens. Actuators, B 123 (2007) 1195-1205.
DOI: 10.1016/j.snb.2006.11.016
Google Scholar
[14]
B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers, ACS Nano 6 (2012) 6546-6561.
DOI: 10.1021/nn3023969
Google Scholar
[15]
L. Ding, A.M. Bond, J. Zhai, J. Zhang, Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review, Anal. Chim. Acta 797 (2013) 1-12.
DOI: 10.1016/j.aca.2013.07.035
Google Scholar
[16]
M.A. Aziz, S. Park, S. Jon, H. Yang, Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer, Chem. Commun. (2007) 2610-2612.
DOI: 10.1039/b701190c
Google Scholar
[17]
M.A. Aziz, K. Jo, J. Lee, M.R.H. Akanda, D. Sung, S. Jon, H. Yang, An amphiphilic polymer- and carbon nanotube-modified indium tin oxide electrode for sensitive electrochemical DNA detection with low nonspecific binding, Electroanalysis 22 (2010) 2615-2619.
DOI: 10.1002/elan.201000209
Google Scholar
[18]
W. Putzbach, N.J. Ronkainen, Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors 13 (2013) 4811-4840.
DOI: 10.3390/s130404811
Google Scholar
[19]
J. Bai, X. Jiang, A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments, Anal. Chem. 85 (2013) 8095-8101.
DOI: 10.1021/ac400659u
Google Scholar
[20]
M.A. Aziz, A. Kawde, Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles, Microchim Acta 180 (2013) 837-843.
DOI: 10.1007/s00604-013-1000-0
Google Scholar
[21]
S. Dutta-Gupta, G. Suarez, C. Santschia, L. Juillerat-Jeanneret, O.J.F. Martin, Ultrasensititve system for the real time detection of H2O2 based on strong coupling in a bio-plasmonic system, Proc. of SPIE 8234 (2012) 82340K-1-6.
DOI: 10.1117/12.910292
Google Scholar
[22]
J. Li, R. Yuan, Y. Chai, T. Zhang, X. Che, Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres, Microchim Acta 171 (2010) 125-131.
DOI: 10.1007/s00604-010-0383-4
Google Scholar
[23]
T. Selvaraju, R. Ramaraj, Electrocatalytic reduction of hydrogen peroxide at nanostructured copper modified electrode, J Appl Electrochem 39 (2009) 321-327.
DOI: 10.1007/s10800-008-9674-4
Google Scholar
[24]
G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng , X. Zhang, Non-enzymatic electrochemical sensing of glucose, Microchim Acta 180 (2013) 161-186.
DOI: 10.1007/s00604-012-0923-1
Google Scholar
[25]
K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation, Int. J. Electrochem. Sci. 5 (2010) 1246-1301.
Google Scholar
[26]
P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors, RSC Adv. 3 (2013) 3487-3502.
DOI: 10.1039/c2ra22360k
Google Scholar
[27]
X. Zhong, R. Yuan, Y. Chai, In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors, Chem. Commun. 48 (2012) 597-599.
DOI: 10.1039/c1cc16081h
Google Scholar
[28]
Y. Zhang, X. Xiao, Y. Sun, Y. Shi, H. Dai, P. Ni, J. Hu, Z. Li, Y. Song, L Wang, Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing, Electroanalysis 25 (2013) 959-966.
DOI: 10.1002/elan.201200479
Google Scholar
[29]
S. Cherevko, C. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection, Sens. Actuators, B 142 (2009) 216-223.
DOI: 10.1016/j.snb.2009.07.023
Google Scholar
[30]
Y. Ma, J. Di, X. Yan, M. Zhao, Z. Lu, Y. Tu, Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application, Biosens. Bioelectron. 24 (2009) 1480-1483.
DOI: 10.1016/j.bios.2008.10.007
Google Scholar
[31]
K.K. Lee, P. Y. Loh, C.H. Sow, W.S. Chin, CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor, Electrochem. Commun. 20 (2012) 128-132.
DOI: 10.1016/j.elecom.2012.04.012
Google Scholar
[32]
S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo, Q. Cai, Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection, J. Alloys Compd. 554 (2013) 169-176.
DOI: 10.1016/j.jallcom.2012.10.186
Google Scholar
[33]
R.N. Goyal, M.A. Aziz, M. Oyama, S. Chatterjee, A.R.S. Rana, Nanogold based electrochemical sensor for determination of norepinephrine in biological fluids, Sens. Actuators, B 153 (2011) 232-238.
DOI: 10.1016/j.snb.2010.10.041
Google Scholar
[34]
R.N. Goyal, A.R.S. Rana, M.A. Aziz, M. Oyama, Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine, Anal. Chim. Acta 693 (2011) 35-40.
DOI: 10.1016/j.aca.2011.03.026
Google Scholar
[35]
N.F. Atta, M.F. El-Kady, A. Galal, Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol, Sens. Actuators, B 141 (2009) 566-574.
DOI: 10.1016/j.snb.2009.07.002
Google Scholar
[36]
Y. Bai, W. Zhang, Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode, Electroanalysis 22 (2010) 237-243.
DOI: 10.1002/elan.200900210
Google Scholar
[37]
J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu, X. Hu, Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine, Anal. Methods 4 (2012) 1725-1728.
DOI: 10.1039/c2ay05926f
Google Scholar
[38]
A. Yang, Y. Xue, Y. Zhang, X. Zhang, H. Zhao, X. Li, Y. He, Z. Yuan, A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine, J. Mater. Chem. B 1 (2013) 1804-1811.
DOI: 10.1039/c3tb00513e
Google Scholar
[39]
R.N. Goyal, S. Bishnoi, H. Chasta, M.A. Aziz, M. Oyama, Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan, Talanta 85 (2011) 2626- 2631.
DOI: 10.1016/j.talanta.2011.08.031
Google Scholar
[40]
S. Mao, W. Li, Y. Long, Y. Tu, A. Deng, Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode, Anal. Chim. Acta 738 (2012) 35-40.
DOI: 10.1016/j.aca.2012.06.008
Google Scholar
[41]
X. Sun, Y. Li, Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly, Langmuir 21 (2005) 6019-6024.
DOI: 10.1021/la050193+
Google Scholar
[42]
X. Zhang, Y. Cao, S. Yu, F. Yang, P. Xi, An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles, Biosens. Bioelectron. 44 (2013) 183-190.
DOI: 10.1016/j.bios.2013.01.020
Google Scholar
[43]
N. Moghimi, K.T. Leung, FePt alloy nanoparticles for biosensing: Enhancement of vitamin C sensor performance and selectivity by nanoalloying, Anal. Chem. 85 (2013) 5974-5980.
DOI: 10.1021/ac400785h
Google Scholar
[44]
L. Yang, S. Liu, Q. Zhang, F. Li, Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode, Talanta 89 (2012) 136-141.
DOI: 10.1016/j.talanta.2011.12.002
Google Scholar
[45]
Y. Li, H. Bai, Q. Liu, J. Bao, M. Han, Z. Dai, A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles, Biosens. Bioelectron. 25 (2010) 2356-2360.
DOI: 10.1016/j.bios.2010.03.036
Google Scholar
[46]
X. Deng, F. Wang, Z. Chen, A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues, Talanta 82 (2010) 1218-1224.
DOI: 10.1016/j.talanta.2010.06.035
Google Scholar
[47]
F. Ricci, A. Amine, D. Moscone, G. Palleschi, A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications, Biosens. Bioelectron. 22 (2007) 854-862.
DOI: 10.1016/j.bios.2006.03.004
Google Scholar
[48]
H. Teymourian, A. Salimi, R. Hallaj, Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor, Biosens. Bioelectron. 33 (2012) 60-68.
DOI: 10.1016/j.bios.2011.12.031
Google Scholar
[49]
G. Aydogdu, D.K. Zeybek, B. Zeybek, S. Pekyardımc, Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor, J. Appl. Electrochem. 43 (2013) 523-531.
DOI: 10.1007/s10800-013-0536-3
Google Scholar
[50]
Z. Zhang, X. Wang, X. Yang, A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics, Analyst 136 (2011) 4960-4965.
DOI: 10.1039/c1an15602k
Google Scholar
[51]
J. You, S. Jeon, A glassy carbon electrode modified with glucose oxidase and MWCNT-palladium nanoparticles for the determination of glucose, Electroanalysis 23 (2011) 2103-2108.
DOI: 10.1002/elan.201100100
Google Scholar
[52]
S. Jon, J. Seong, A. Khademhosseini, T.T. Tran, P.E. Liabinis, R. Langer, Construction of nonbiofouling surfaces by polymeric self-assembled monolayers, Langmuir 19 (2003) 9989-9993.
DOI: 10.1021/la034839e
Google Scholar
[53]
S. Park, Y.S. Chi, I.S. Choi, J. Seong, S. Jon, A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium, J. Nanosci. Nanotechnol. 6 (2006) 3507-3511.
DOI: 10.1166/jnn.2006.17971
Google Scholar
[54]
M.A. Aziz, B. Kim, M. Kim, S. Yang, H. Lee, S.W. Han, Y.I. Kim, S. Jon, H. Yang, Immunosensing microchip using fast and selective preparation of an iridium oxide nanoparticle-based pseudoreference electrode, Electroanalysis 23 (2011) 2042-2048.
DOI: 10.1002/elan.201100184
Google Scholar
[55]
B. Kim, S. Yang, M.A. Aziz, K. Jo, D. Sung, S. Jon, H. Y. Woo, H. Yang, Electrochemical immunosensing chip using selective surface modification, capillary-driven microfluidic control, and signal amplification by redox cycling, Electroanalysis 22 (2010) 2235-2244.
DOI: 10.1002/elan.201000148
Google Scholar
[56]
M. Mir, M. Alvarez, O. Azzaroni, W. Knoll, Comparison of different supramolecular architectures for oligonucleotide biosensing, Langmuir 24 (2008) 13001-13006.
DOI: 10.1021/la802228e
Google Scholar
[57]
S. Park, H. Yang, D. Kim, K. Jo, S. Jon, Rational design of amphiphilic polymers to make carbon nanotubes water-dispersible, anti-biofouling, and functionalizable, Chem. Commun. (2008) 2876-2878.
DOI: 10.1039/b802057d
Google Scholar
[58]
M.A. Aziz, S. Patra, H. Yang, A facile method of achieving low surface coverage of Au nanoparticles on an indium tin oxide electrode and its application to protein detection, Chem. Commun. (2008) 4607-4609.
DOI: 10.1039/b808026g
Google Scholar