Nanomaterials in Electrochemical Biosensor

Article Preview

Abstract:

Nanomaterial based electrochemical method gain tremendous interest for the detection of biomolecules due to high sensitivity, selectivity, and low fabrication cost. High surface to volume ratio, excellent electrocatalytic properties of the nanomaterials plays important role for the sensitive and selective detection of biomolecules. For electrochemical biosensors, proper control of chemical, electrochemical and physical properties, as well as their functionalization and surface immobilization significantly influences the overall performance. This chapter gives an overview of the importance of the development of nanomaterials based electrochemical biosensors; particularly direct electrooxidation-or electroreduction-based biosensors, catalysis-based biosensors, and label-based affinity biosensors. In addition, fabrication methods including modification of electrode surface with nanomaterials, tailoring their physico-chemical properties, and functionalization with chemicals or biomolecules are also highlighted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-143

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem. 405 (2013) 3753-3771.

DOI: 10.1007/s00216-012-6578-2

Google Scholar

[2] J. Wang, Electrochemical glucose biosensors, Chem. Rev. 108 (2008) 814-825.

Google Scholar

[3] G. Yang, L. Li, R.K. Rana, J. Zhu, Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2, Carbon 61(2013) 357-366.

DOI: 10.1016/j.carbon.2013.05.016

Google Scholar

[4] J. Wang, G. Liu, M.R. Jan, Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events, J. Am. Chem. Soc. 126 (2004) 3010-3011.

DOI: 10.1021/ja031723w

Google Scholar

[5] J. Das, M.A. Aziz, H. Yang, A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels, J. Am. Chem. Soc.128 (2006) 16022-16023.

DOI: 10.1021/ja0672167

Google Scholar

[6] J. Tang, D. Tang, B. Su, J. Huang, B. Qiu, G. Chen, Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts, Biosens. Bioelectron. 26 (2011) 3219-3226.

DOI: 10.1016/j.bios.2010.12.029

Google Scholar

[7] R. Polsky, R. Gill, L. Kaganovsky, I. Willner, Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules, Anal. Chem. 78 (2006) 2268-2271.

DOI: 10.1021/ac0519864

Google Scholar

[8] J. Das, H. Yang, Enhancement of electrocatalytic activity of DNA-conjugated gold nanoparticles and its application to DNA detection, J. Phys. Chem. C 113 (2009) 6093-6099.

DOI: 10.1021/jp809850f

Google Scholar

[9] T. Li, Z. Si, L. Hu, H. Qi, M. Yang, Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-α, Sens. Actuators, B 171-172 (2012) 1060-1065.

DOI: 10.1016/j.snb.2012.06.034

Google Scholar

[10] C. Leng, J. Wu, Q. Xu, G. Lai, H. Ju, F. Yan, A highly sensitive disposable immunosensor through direct electro-reduction of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label, Biosens. Bioelectron. 27 (2011) 71-76.

DOI: 10.1016/j.bios.2011.06.017

Google Scholar

[11] J. Wang, Nanomaterial-based electrochemical biosensors, Analyst, 130 (2005) 421-426.

Google Scholar

[12] J. Wang, Carbon-Nanotube Based Electrochemical Biosensors: A Review, Electroanalysis 17 (2005) 7-14.

Google Scholar

[13] M. Pumera, S. Sanchez, I. Ichinose, J. Tang, Electrochemical nanobiosensors, Sens. Actuators, B 123 (2007) 1195-1205.

DOI: 10.1016/j.snb.2006.11.016

Google Scholar

[14] B.V. Chikkaveeraiah, A.A. Bhirde, N.Y. Morgan, H.S. Eden, X. Chen, Electrochemical immunosensors for detection of cancer protein biomarkers, ACS Nano 6 (2012) 6546-6561.

DOI: 10.1021/nn3023969

Google Scholar

[15] L. Ding, A.M. Bond, J. Zhai, J. Zhang, Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review, Anal. Chim. Acta 797 (2013) 1-12.

DOI: 10.1016/j.aca.2013.07.035

Google Scholar

[16] M.A. Aziz, S. Park, S. Jon, H. Yang, Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer, Chem. Commun. (2007) 2610-2612.

DOI: 10.1039/b701190c

Google Scholar

[17] M.A. Aziz, K. Jo, J. Lee, M.R.H. Akanda, D. Sung, S. Jon, H. Yang, An amphiphilic polymer- and carbon nanotube-modified indium tin oxide electrode for sensitive electrochemical DNA detection with low nonspecific binding, Electroanalysis 22 (2010) 2615-2619.

DOI: 10.1002/elan.201000209

Google Scholar

[18] W. Putzbach, N.J. Ronkainen, Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors 13 (2013) 4811-4840.

DOI: 10.3390/s130404811

Google Scholar

[19] J. Bai, X. Jiang, A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments, Anal. Chem. 85 (2013) 8095-8101.

DOI: 10.1021/ac400659u

Google Scholar

[20] M.A. Aziz, A. Kawde, Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles, Microchim Acta 180 (2013) 837-843.

DOI: 10.1007/s00604-013-1000-0

Google Scholar

[21] S. Dutta-Gupta, G. Suarez, C. Santschia, L. Juillerat-Jeanneret, O.J.F. Martin, Ultrasensititve system for the real time detection of H2O2 based on strong coupling in a bio-plasmonic system, Proc. of SPIE 8234 (2012) 82340K-1-6.

DOI: 10.1117/12.910292

Google Scholar

[22] J. Li, R. Yuan, Y. Chai, T. Zhang, X. Che, Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres, Microchim Acta 171 (2010) 125-131.

DOI: 10.1007/s00604-010-0383-4

Google Scholar

[23] T. Selvaraju, R. Ramaraj, Electrocatalytic reduction of hydrogen peroxide at nanostructured copper modified electrode, J Appl Electrochem 39 (2009) 321-327.

DOI: 10.1007/s10800-008-9674-4

Google Scholar

[24] G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng , X. Zhang, Non-enzymatic electrochemical sensing of glucose, Microchim Acta 180 (2013) 161-186.

DOI: 10.1007/s00604-012-0923-1

Google Scholar

[25] K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation, Int. J. Electrochem. Sci. 5 (2010) 1246-1301.

Google Scholar

[26] P. Si, Y. Huang, T. Wang, J. Ma, Nanomaterials for electrochemical non-enzymatic glucose biosensors, RSC Adv. 3 (2013) 3487-3502.

DOI: 10.1039/c2ra22360k

Google Scholar

[27] X. Zhong, R. Yuan, Y. Chai, In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors, Chem. Commun. 48 (2012) 597-599.

DOI: 10.1039/c1cc16081h

Google Scholar

[28] Y. Zhang, X. Xiao, Y. Sun, Y. Shi, H. Dai, P. Ni, J. Hu, Z. Li, Y. Song, L Wang, Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing, Electroanalysis 25 (2013) 959-966.

DOI: 10.1002/elan.201200479

Google Scholar

[29] S. Cherevko, C. Chung, Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection, Sens. Actuators, B 142 (2009) 216-223.

DOI: 10.1016/j.snb.2009.07.023

Google Scholar

[30] Y. Ma, J. Di, X. Yan, M. Zhao, Z. Lu, Y. Tu, Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application, Biosens. Bioelectron. 24 (2009) 1480-1483.

DOI: 10.1016/j.bios.2008.10.007

Google Scholar

[31] K.K. Lee, P. Y. Loh, C.H. Sow, W.S. Chin, CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor, Electrochem. Commun. 20 (2012) 128-132.

DOI: 10.1016/j.elecom.2012.04.012

Google Scholar

[32] S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo, Q. Cai, Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection, J. Alloys Compd. 554 (2013) 169-176.

DOI: 10.1016/j.jallcom.2012.10.186

Google Scholar

[33] R.N. Goyal, M.A. Aziz, M. Oyama, S. Chatterjee, A.R.S. Rana, Nanogold based electrochemical sensor for determination of norepinephrine in biological fluids, Sens. Actuators, B 153 (2011) 232-238.

DOI: 10.1016/j.snb.2010.10.041

Google Scholar

[34] R.N. Goyal, A.R.S. Rana, M.A. Aziz, M. Oyama, Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine, Anal. Chim. Acta 693 (2011) 35-40.

DOI: 10.1016/j.aca.2011.03.026

Google Scholar

[35] N.F. Atta, M.F. El-Kady, A. Galal, Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol, Sens. Actuators, B 141 (2009) 566-574.

DOI: 10.1016/j.snb.2009.07.002

Google Scholar

[36] Y. Bai, W. Zhang, Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode, Electroanalysis 22 (2010) 237-243.

DOI: 10.1002/elan.200900210

Google Scholar

[37] J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xu, X. Hu, Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine, Anal. Methods 4 (2012) 1725-1728.

DOI: 10.1039/c2ay05926f

Google Scholar

[38] A. Yang, Y. Xue, Y. Zhang, X. Zhang, H. Zhao, X. Li, Y. He, Z. Yuan, A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine, J. Mater. Chem. B 1 (2013) 1804-1811.

DOI: 10.1039/c3tb00513e

Google Scholar

[39] R.N. Goyal, S. Bishnoi, H. Chasta, M.A. Aziz, M. Oyama, Effect of surface modification of indium tin oxide by nanoparticles on the electrochemical determination of tryptophan, Talanta 85 (2011) 2626- 2631.

DOI: 10.1016/j.talanta.2011.08.031

Google Scholar

[40] S. Mao, W. Li, Y. Long, Y. Tu, A. Deng, Sensitive electrochemical sensor of tryptophan based on Ag@C core-shell nanocomposite modified glassy carbon electrode, Anal. Chim. Acta 738 (2012) 35-40.

DOI: 10.1016/j.aca.2012.06.008

Google Scholar

[41] X. Sun, Y. Li, Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly, Langmuir 21 (2005) 6019-6024.

DOI: 10.1021/la050193+

Google Scholar

[42] X. Zhang, Y. Cao, S. Yu, F. Yang, P. Xi, An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles, Biosens. Bioelectron. 44 (2013) 183-190.

DOI: 10.1016/j.bios.2013.01.020

Google Scholar

[43] N. Moghimi, K.T. Leung, FePt alloy nanoparticles for biosensing: Enhancement of vitamin C sensor performance and selectivity by nanoalloying, Anal. Chem. 85 (2013) 5974-5980.

DOI: 10.1021/ac400785h

Google Scholar

[44] L. Yang, S. Liu, Q. Zhang, F. Li, Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@polyaniline core–shell nanocomposites modified electrode, Talanta 89 (2012) 136-141.

DOI: 10.1016/j.talanta.2011.12.002

Google Scholar

[45] Y. Li, H. Bai, Q. Liu, J. Bao, M. Han, Z. Dai, A nonenzymatic cholesterol sensor constructed by using porous tubular silver nanoparticles, Biosens. Bioelectron. 25 (2010) 2356-2360.

DOI: 10.1016/j.bios.2010.03.036

Google Scholar

[46] X. Deng, F. Wang, Z. Chen, A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues, Talanta 82 (2010) 1218-1224.

DOI: 10.1016/j.talanta.2010.06.035

Google Scholar

[47] F. Ricci, A. Amine, D. Moscone, G. Palleschi, A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications, Biosens. Bioelectron. 22 (2007) 854-862.

DOI: 10.1016/j.bios.2006.03.004

Google Scholar

[48] H. Teymourian, A. Salimi, R. Hallaj, Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor, Biosens. Bioelectron. 33 (2012) 60-68.

DOI: 10.1016/j.bios.2011.12.031

Google Scholar

[49] G. Aydogdu, D.K. Zeybek, B. Zeybek, S. Pekyardımc, Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor, J. Appl. Electrochem. 43 (2013) 523-531.

DOI: 10.1007/s10800-013-0536-3

Google Scholar

[50] Z. Zhang, X. Wang, X. Yang, A sensitive choline biosensor using Fe3O4 magnetic nanoparticles as peroxidase mimics, Analyst 136 (2011) 4960-4965.

DOI: 10.1039/c1an15602k

Google Scholar

[51] J. You, S. Jeon, A glassy carbon electrode modified with glucose oxidase and MWCNT-palladium nanoparticles for the determination of glucose, Electroanalysis 23 (2011) 2103-2108.

DOI: 10.1002/elan.201100100

Google Scholar

[52] S. Jon, J. Seong, A. Khademhosseini, T.T. Tran, P.E. Liabinis, R. Langer, Construction of nonbiofouling surfaces by polymeric self-assembled monolayers, Langmuir 19 (2003) 9989-9993.

DOI: 10.1021/la034839e

Google Scholar

[53] S. Park, Y.S. Chi, I.S. Choi, J. Seong, S. Jon, A facile method for construction of antifouling surfaces by self-assembled polymeric monolayers of PEG-silane copolymers formed in aqueous medium, J. Nanosci. Nanotechnol. 6 (2006) 3507-3511.

DOI: 10.1166/jnn.2006.17971

Google Scholar

[54] M.A. Aziz, B. Kim, M. Kim, S. Yang, H. Lee, S.W. Han, Y.I. Kim, S. Jon, H. Yang, Immunosensing microchip using fast and selective preparation of an iridium oxide nanoparticle-based pseudoreference electrode, Electroanalysis 23 (2011) 2042-2048.

DOI: 10.1002/elan.201100184

Google Scholar

[55] B. Kim, S. Yang, M.A. Aziz, K. Jo, D. Sung, S. Jon, H. Y. Woo, H. Yang, Electrochemical immunosensing chip using selective surface modification, capillary-driven microfluidic control, and signal amplification by redox cycling, Electroanalysis 22 (2010) 2235-2244.

DOI: 10.1002/elan.201000148

Google Scholar

[56] M. Mir, M. Alvarez, O. Azzaroni, W. Knoll, Comparison of different supramolecular architectures for oligonucleotide biosensing, Langmuir 24 (2008) 13001-13006.

DOI: 10.1021/la802228e

Google Scholar

[57] S. Park, H. Yang, D. Kim, K. Jo, S. Jon, Rational design of amphiphilic polymers to make carbon nanotubes water-dispersible, anti-biofouling, and functionalizable, Chem. Commun. (2008) 2876-2878.

DOI: 10.1039/b802057d

Google Scholar

[58] M.A. Aziz, S. Patra, H. Yang, A facile method of achieving low surface coverage of Au nanoparticles on an indium tin oxide electrode and its application to protein detection, Chem. Commun. (2008) 4607-4609.

DOI: 10.1039/b808026g

Google Scholar