Advanced Materials for Gene Delivery

Article Preview

Abstract:

Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-47

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Nishikawa, Y. Takakura, M. Hashida, Pharmacokinetic considerations regarding non-viral cancer gene therapy, Cancer Sci. 99 (2008) 856-862.

DOI: 10.1111/j.1349-7006.2008.00774.x

Google Scholar

[2] S. Yla-Herttuala, K. Alitalo, Gene transfer as a tool to induce therapeutic vascular growth, Nat. Med. 9 (2003) 694-701.

DOI: 10.1038/nm0603-694

Google Scholar

[3] H. Huebner, Cell encapsulation in animal cell biotechnology: Methods and Protocols, 24 (2007) 179-191.

Google Scholar

[4] D.K. Armstrong, S. Cunningham, J.C. Davies, E.W.F.W. Alton, Gene therapy in cystic fibrosis, Arch. Dis. Child. (2014).

DOI: 10.1136/archdischild-2012-302158

Google Scholar

[5] R. Aggarwal, A. Prakash, M. Aggarwal, Thalassemia: An overview, J. Sci. Soc. 41 (2014) 3-6.

Google Scholar

[6] R.J. Fairclough, M.J. Wood, K.E. Davies, Therapy for duchenne muscular dystrophy: renewed optimism from genetic approaches, Nature Rev. Genetics, 14 (2013) 373-378.

DOI: 10.1038/nrg3460

Google Scholar

[7] S.L. Ginn, I.E. Alexander, M.L. Edelstein, M.R. Abedi, J. Wixon, Gene therapy clinical trials worldwide to 2012- an update, J. Gene Med. 15(2), (2013) 65-77.

DOI: 10.1002/jgm.2698

Google Scholar

[8] J.M. Stribley, K.S. Rehman, H. Niu, G.M. Christman, Gene therapy and reproductive medicine, Fertil. Steril. 77 (2002) 645-657.

DOI: 10.1016/s0015-0282(01)03233-2

Google Scholar

[9] M.B. Asparuhova, I. Barde, D. Trono, K. Schranz, D.J. Schumperli, Development and characterization of a triple combination gene therapy vector inhibiting HIV-1 multiplication, J. Gene Med. 10 (2008) 1059-1070.

DOI: 10.1002/jgm.1238

Google Scholar

[10] F.D. Ledley, Pharmaceutical approach to somatic gene therapy, Pharm. Res. 13 (1996) 1595-1614.

Google Scholar

[11] T. Friedmann, R. Roblin, Gene therapy for human genetic disease, Science 175 (1972) 949-955.

Google Scholar

[12] E. Alton, Progress and Prospects: Gene Therapy Clinical Trials (Part 1), Gene Ther. 14(2007) 1439-1447.

DOI: 10.1038/sj.gt.3303001

Google Scholar

[13] J. Vacik, B.S. Dean, W.E. Zimmer, D.A. Dean, Cell-specific nuclear import of plasmid DNA, Gene Ther. 6 (1999) 1006-1014.

DOI: 10.1038/sj.gt.3300924

Google Scholar

[14] D.V. Schaffer, D.A. Lauffenburger, Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery, J. Biol. Chem. 273 (1998) 28004-28009.

DOI: 10.1074/jbc.273.43.28004

Google Scholar

[15] A. Fasbender, J. Zabner, B.G. Zeither, M.J. Welsh,A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia, Gene Ther. 4 (1997) 1173-1180.

DOI: 10.1038/sj.gt.3300524

Google Scholar

[16] H. Matsui, L.G. Johnson, S.H. Randell, R.C. Boucher, Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells,J. Biol. Chem. 272 (1997) 1117-1126.

DOI: 10.1074/jbc.272.2.1117

Google Scholar

[17] G.J. Nabel, Development of optimized vectors for gene therapy, Proc. Natl. Acad. Sci. USA. 96 (1999) 324-326.

DOI: 10.1073/pnas.96.2.324

Google Scholar

[18] L. Li, F. Saade, N. Petrovsky, The future of human DNA vaccines, J. Biotechnol. 162 (2012) 171-182.

Google Scholar

[19] D.A. Hullett, Gene therapy in transplantation, J. Heart Lung Transplant. 15 (1996) 857-862.

Google Scholar

[20] J.M. Stribley, K.S. Rehman, H. Niu, G.M. Christman, Gene therapy and reproductive medicine. Fertil. Steril. 77 (2002) 645-657.

DOI: 10.1016/s0015-0282(01)03233-2

Google Scholar

[21] L.S. Young, P.F. Searle, D. Onion, V. Mautner, Viral gene therapy strategies: from basic science to clinical application, J. Pathol. 208 (2006) 299-318.

DOI: 10.1002/path.1896

Google Scholar

[22] C. Mueller, T.R. Flotte, Clinical gene therapy using recombinant adeno-associated virus vectors, Gene Ther. 15 (2008) 858-863.

DOI: 10.1038/gt.2008.68

Google Scholar

[23] S.A. Rosenberg, P. Aebersold, K. Cornetta, A. Kasid, R.A. Morgan, R. Moen, Gene transfer into human-immunotherapy of patients with advanced melanoma, using tumor infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323 (1990) 570-578.

DOI: 10.1056/nejm199008303230904

Google Scholar

[24] N.A. Wivel, J.M. Wilson, Methods of gene delivery. Hematol. Oncol. Clin. North. Am. 12 (1998) 483-501.

Google Scholar

[25] M. Watanabe, Y. Nasu, H. Kumon, Adenovirus-mediated REIC/Dkk-3 gene therapy: Development of an autologous cancer vaccination therapy, Oncol. Lett. 7 (2014) 595-601.

DOI: 10.3892/ol.2013.1777

Google Scholar

[26] Z. Ram, K.W. Culver, E.M. Oshiro, J.J. Viola, H.L. DeVroom, E. Otto, Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells, Nature Med. 3 (1997) 1354-1361.

DOI: 10.1038/nm1297-1354

Google Scholar

[27] J.R. Herman, H.L. Adler, E. Aguilar- Cordova, A. Rojas-Martinez, S. Woo, T.L. Timme, M. Wheeler, T.C. Thompson, P.T. Scardino, Insitu gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum.Gene Ther. 10 (1999) 1239-1249.

DOI: 10.1089/10430349950018229

Google Scholar

[28] F. McCormick, Cancer gene therapy, fringe or cutting edge, Nature Rev. Cancer 1 (2001) 130-141.

DOI: 10.1038/35101008

Google Scholar

[29] G.Y. Wu, J.M. Wilson, F. Salaby, M. Grossman, D.A. Shafritz, C.H. Wu, Receptor-mediated gene delivery in vivo: partial correction of genetic analbuminemia in nagase rats, J. Biol. Chem. 266 (1991) 14338-14342.

DOI: 10.1016/s0021-9258(18)98689-8

Google Scholar

[30] M.E. Gore, Adverse effects of gene therapy: gene therapy can cause leukaemia: no shock, mild horror but a probe, Gene Ther. 10 (2003) 4-16.

DOI: 10.1038/sj.gt.3301946

Google Scholar

[31] M. Mirjam, Nordling-David, G. Golomb, Gene delivery by liposomes, Israel J. Chem. 53 (2013) 737-747.

Google Scholar

[32] H. Lv, S. Zhang, B. Wang, S. Cui, J. Yan, Toxicity of cationic lipids and cationic polymers in gene delivery,J. Control Release 114 (2006) 100-109.

DOI: 10.1016/j.jconrel.2006.04.014

Google Scholar

[33] T. Ferkol, G.L. Lindberg, J. Chen, J.C. Perales, D.R. Crawford, O.D. Ratnoff, R.W. Hanson, Regulation of the phosphoenol pyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer,FASEB J. 7 (1993) 1081-1090.

DOI: 10.1096/fasebj.7.11.8370479

Google Scholar

[34] D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery.Nat. Rev. Drug Discov. 4 (2005) 581-593.

DOI: 10.1038/nrd1775

Google Scholar

[35] M. Lee, S.W. Kim, Polyethylene glycol-conjugated copolymers for plasmid DNA delivery, Pharm. Res. 22 (2005) 1-10.

DOI: 10.1007/s11095-004-9003-5

Google Scholar

[36] S. Jiao, P. Williams, R.K. Berg, B.A. Hodgeman, L.J. Liu, G. Repetto, J.A. Wolff, Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther. 3 (1992) 21-33.

DOI: 10.1089/hum.1992.3.1-21

Google Scholar

[37] M.A. Hickman, R.W. Malone, K. Lehmann-Bruinsma, T.R. Sih, D. Knoell, F.C. Szoka, R. Walzem, D.M. Carlson, J.S. Powell, Gene expression following direct injection of DNA into liver. Hum. Gene Ther. 5 (1994) 1477-1483.

DOI: 10.1089/hum.1994.5.12-1477

Google Scholar

[38] A. Ardehali, A. Fyfe, H. Laks, D.C. Drinkwater, J.H. Qiao, A.J. Lusis, Direct gene transfer into donor hearts at the time of harvest. J. Thorac. Cardiovasc. Surg. 109 (1995) 716-720.

DOI: 10.1016/s0022-5223(95)70353-5

Google Scholar

[39] R.G. Vile, I.R. Hart, Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 53 (1993) 3860-3864.

Google Scholar

[40] J.B. Ulmer, J.J. Donnelly, S.E. Parker, G.H. Rhodes, P.L. Felgner, V.J. Dwarki, Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259 (1993) 1745-1749.

DOI: 10.1126/science.8456302

Google Scholar

[41] A. Rolland, Gene medicines: the end of the beginning, Adv. Drug Deliv. Rev. 57 (2005) 669-673.

Google Scholar

[42] W.F. Anderson, Human Gene Therapy, Nature 392 (1998) 25-30.

Google Scholar

[43] S. Han, R.I. Mahato, Y.K. Sung, S.W. Kim, Development of biomaterials for gene therapy, Mol. Ther. 2 (2000) 302-317.

Google Scholar

[44] J.A. Wolff, R.W. Malone, P. Williams, W. Chang, G. Acsadi, A. Jani, L. Philip, Direct gene transfer into mouse muscle in vivo,Science 247 (1990) 1465-1468.

DOI: 10.1126/science.1690918

Google Scholar

[45] M.L. Chang, J.L. Chen, C.T. Yeh, M.Y. Chang, C.K. Liang, C.T. Chiu, D.Y. Lin, Y.F. Liaw, Gene gun bombardment with DNA-coated gold particles is a potential alternative to hydrodynamics-based transfection for delivering genes into superficial hepatocytes, Hum. Gene. Ther. 19 (2008) 391-395.

DOI: 10.1089/hum.2007.152

Google Scholar

[46] I. Danko, J.A. Wolff, Direct gene transfer into muscle, Vaccine 12 (1994) 1499-1502.

DOI: 10.1016/0264-410x(94)90072-8

Google Scholar

[47] A. Vaheri, J.S. Pagano, Infectious poliovirus RNA: a sensitive method of assay,Virology 27 (1965) 434-436.

DOI: 10.1016/0042-6822(65)90126-1

Google Scholar

[48] F.L. Graham, A.J.V. Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52 (1973) 456-467.

DOI: 10.1016/0042-6822(73)90341-3

Google Scholar

[49] C. Tros de Ilarduya, Y. Sun, N. Duzgunes, Gene delivery by lipoplexes and polyplexes, Eur. J. Pharm. Sci. 40 (2010) 159-170.

DOI: 10.1016/j.ejps.2010.03.019

Google Scholar

[50] L. Wasungu, D. Hoekstra, Cationic lipids, lipoplexes and intracellular delivery of genes, J. Control Release, 116 (2006) 255-264.

DOI: 10.1016/j.jconrel.2006.06.024

Google Scholar

[51] E. Mayhew, D. Papajadjopoulos, Therapeutic applications of liposomes, in Liposomes, M. J. Ostro (Ed.), Marcel Dekker, New York, NY, USA, 1983.

Google Scholar

[52] P.L. Felgner, T.R. Gadek, M. Holm, Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl Acad. Sci. USA 84 (1987) 7413-7417.

DOI: 10.1073/pnas.84.21.7413

Google Scholar

[53] R. Leventis, J.R. Silvius, Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles, Biochimica et Biophysica Acta, 1023 (1990) 124-132.

DOI: 10.1016/0005-2736(90)90017-i

Google Scholar

[54] X. Gao, L. Huang, A novel cationic liposome reagent for efficient transfection of mammalian cells, Biochemical and Biophysical Research Communications, 179 (1991) 280-285.

DOI: 10.1016/0006-291x(91)91366-k

Google Scholar

[55] J.-P. Behr, B. Dementia, J.-P. Loeffler, J. Perez-Mutul, Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA, Proc. Natl Acad. Sci. USA 86 (1989) 6982-6986.

DOI: 10.1073/pnas.86.18.6982

Google Scholar

[56] H. Farhood, N. Serbina, L. Huang, The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer, Biochimica et Biophysica Acta, 1235 (1995) 289-295.

DOI: 10.1016/0005-2736(95)80016-9

Google Scholar

[57] T. Ren, Y.K. Song, G. Zhang, D. Liu, Structural basis of DOTMA for its high intravenous transfection activity in mouse, Gene Ther. 7 (2000) 764-768.

DOI: 10.1038/sj.gt.3301153

Google Scholar

[58] S. Jain, G. Zon, M. Sundaralingam, Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC), Biochemistry 28 (1989) 2360-2364.

DOI: 10.1021/bi00432a002

Google Scholar

[59] N. Zhu, D. Liggit, Y. Liu, R. Debs, Systemetric gene expression after intravenous DNA delivery into adult mice, Science 261 (1993) 209-211.

DOI: 10.1126/science.7687073

Google Scholar

[60] Y. Wang, H.H. Su, Y. Yang, Y. Hu, L. Zhang, P. Blancafort, L. Huang, Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy, Mol. Ther. 21 (2013) 358-367.

DOI: 10.1038/mt.2012.250

Google Scholar

[61] X. Gao, L. Huang, A novel cationic liposome reagent for efficient transfection of mammalian cells, Biochemical and Biophysical Research Communications 179 (1991) 280-285.

DOI: 10.1016/0006-291x(91)91366-k

Google Scholar

[62] S. Ajmani, J.A. Hughes, 3β [N-(NM', N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-chol)-mediated gene delivery to primary rat neurons: characterization and mechanism, Neurochemical Research 24 (1999) 699-703.

Google Scholar

[63] J.M. Metselaar, P. Bruin, L.W.T. De Boer, A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity, Bioconjugate Chem. 14 (2003) 1156-1164.

DOI: 10.1021/bc0340363

Google Scholar

[64] J.-K. Kim, S.-H. Choi, C.-O. Kim, J.-S. Park, W.-S. Ahn, C.-K. Kim, Enhancement of polyethylene glycol (PEG)-modified cationic liposome-mediated gene deliveries: effects on serum stability and transfection efficiency, J. Pharmacy and Pharmacology, 55 (2003) 453-460.

DOI: 10.1211/002235702928

Google Scholar

[65] D. Needham, T.J. McIntosh, D.D. Lasic, Repulsive interactions and mechanical stability of polymer-grafted lipid membranes, Biochimica et Biophysica Acta, 1108 (1992) 40-48.

DOI: 10.1016/0005-2736(92)90112-y

Google Scholar

[66] F. Shi, L. Wasungu, A. Nomden, Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides; role of lipid exchangeability and non-lamellar transitions, Biochemical Journal, 366 (2002) 333-341.

DOI: 10.1042/bj20020590

Google Scholar

[67] C. Srinivasan, D.J. Burgess, Optimization and characterization of anionic lipoplexes for gene delivery, J. Control Release 136 (2009) 62-70.

DOI: 10.1016/j.jconrel.2009.01.022

Google Scholar

[68] C. Nicolau, A.L. Pape, P. Soriano, F. Fargette, M.F. Juhel, In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I,Proc. Natl Acad. Sci. USA 80 (1983), 1068-1072.

DOI: 10.1073/pnas.80.4.1068

Google Scholar

[69] F.D. Ledley, Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6 (1995) 1129-1144.

DOI: 10.1089/hum.1995.6.9-1129

Google Scholar

[70] S.D. Patil, D.G. Rhodes, D.J. Burgess, Biophysical characterization of anionic lipoplexes, BBA 1711 (2005) 1-11.

DOI: 10.1016/j.bbamem.2005.03.004

Google Scholar

[71] S.D. Patil, D.G. Rhodes, D.J. Burgess, Anionic liposomal delivery system for DNA transfection, AAPS J. 6 (2004) e29.

DOI: 10.1208/aapsj060429

Google Scholar

[72] H.C. Kang, K.M. Huh, Y.H. Bae, Polymeric nucleic acid carrier: Current issues and novel design approaches, J. Control. Release 164 (2012) 256-264.

DOI: 10.1016/j.jconrel.2012.06.036

Google Scholar

[73] C.L. Gebhart, A.V. Kabanov, Evaluation of polyplexes as gene transfer agents, J. Controll. Rel. 73 (2001) 401-416.

DOI: 10.1016/s0168-3659(01)00357-1

Google Scholar

[74] T.G. Park, J.H. Jeong, S.W. Kim, Current status of polymeric gene delivery systems, Adv. Drug Deliv. Rev. 58 (2006) 467-486.

DOI: 10.1016/j.addr.2006.03.007

Google Scholar

[75] T. Kushibiki, N. Nagata-Nakajima, M. Sugai, A. Shimizu, Y. Tabata, Delivery of plasmid DNA expressing small interference RNA for TGF-β type II receptor by cationized gelatin to prevent interstitial renal fibrosis, J. Control. Release 105 (2005) 318-331.

DOI: 10.1016/j.jconrel.2005.02.030

Google Scholar

[76] J. Wang, I.L. Lee, W.S. Lim, S.M. Chia, H. Yu, K.W. Leong, H.Q. Mao, Evaluation of collagen and methylated collagen as gene carriers, Int. J. Pharm. 279 (2004) 115-126.

DOI: 10.1016/j.ijpharm.2004.04.014

Google Scholar

[77] F. Abedini, H. Hosseinkhani, M. Ismail, Y.-R. Chen, A.R. Omar, P.P. Chong, A.J. Domb, In vitro intracellular trafficking of biodegradable nanoparticles of dextran-spermine in cancer cell lines, Int. J. Nanotechnol. 8 (2011) 712-723.

DOI: 10.1504/ijnt.2011.041440

Google Scholar

[78] J.J. Thomas, M.R. Rekha, C.P. Sharma, Unraveling the intracellular efficacy of dextran-histidine polycation as an efficient nonviral gene delivery system, Mol. Pharm. 9 (2012) 121-134.

DOI: 10.1021/mp200485b

Google Scholar

[79] Y. Song, H. Wang, X. Zeng, Y. Sun, X. Zhang, J. Zhou, L. Zhang, Effect of molecular weight and degree of substitution of quaternized cellulose on the efficiency of gene transfection, Bioconjugate Chem. 21 (2010) 1271-1279.

DOI: 10.1021/bc100068f

Google Scholar

[80] M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K.M. Varum, P. Artursson, Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo, Gene Ther. 8 (2001) 1108-1121.

DOI: 10.1038/sj.gt.3301492

Google Scholar

[81] K. Bowman, K.W. Leong, Chitosan nanoparticles for oral drug and gene delivery, Int. J Nanomedicine 1 (2006) 117-128.

DOI: 10.2147/nano.2006.1.2.117

Google Scholar

[82] J.M. Dang, K.W. Leong, Natural polymers for gene delivery and tissue engineering, Adv. Drug Deliv. Rev. 58 (2006) 487-499.

DOI: 10.1016/j.addr.2006.03.001

Google Scholar

[83] K. Chaturvedi, K. Ganguly, A.R. Kulkarni, V.H. Kulkarni, M.N. Nadagouda, W.E. Rudzinski, T.M. Aminabhavi, Cyclodextrin based siRNA delivery nanocarriers: a state-of-the-art review, Expert. Opin. Drug Deliv. 8 (2011) 1455-1468.

DOI: 10.1517/17425247.2011.610790

Google Scholar

[84] H. Gonzalez, S.J. Hwang, M.E. Davis, New class of polymers for the delivery of macromolecular therapeutics, Bioconjug. Chem. 10 (1999) 1068-1074.

DOI: 10.1021/bc990072j

Google Scholar

[85] S.H. Pun, N.C. Bellocq, A. Liu, G. Jensen, T. Machemer, E. Quijano, T. Schluep, S. Wen, H. Engler, J. Heidel, M.E. Davis, Cyclodextrin-modified polyethylenimine polymers for gene delivery, Bioconjugate Chem. 15 (2004) 831-840.

DOI: 10.1021/bc049891g

Google Scholar

[86] P. Hiwale, S. Lampis, G. Conti, C. Caddeo, S. Murgia, A.M. Fadda, M. Monduzzi, In vitro release of lysozyme from gelatin microspheres: Effect of cross-linking agents and thermoreversible gel as suspending medium, Biomacromolecules 12 (2011) 3186-3193.

DOI: 10.1021/bm200679w

Google Scholar

[87] C.Y. Li, W. Yuan, H. Jiang, J.S. Li, F.J. Xu, W.T. Yang, J. Ma, PCL film surfaces conjugated with P(DMAEMA)/Gelatin complexes for improving cell immobilization and gene transfection, Bioconjugate Chem. 22 (2011) 1842-1851.

DOI: 10.1021/bc200241m

Google Scholar

[88] K. Morimoto, S. Chono, T. Kosai, T. Seki, Y. Tabata, Design of cationic microspheres based on aminated gelatin for controlled release of peptide and protein drugs, Drug Deliv. 15 (2008) 113-117.

DOI: 10.1080/10717540801905124

Google Scholar

[89] X. Xu, R.M. Capito, M. Spector, Delivery of plasmid IGF-1 to chondrocytes via cationized gelatin nanoparticles, J. Biomed. Mater. Res. Part A 84A (2008) 73-83.

DOI: 10.1002/jbm.a.31372

Google Scholar

[90] S. Inada, H. Fujiwara, K. Atsuji, K. Takashima, Y. Araki, T. Kubota, Y. Tabata, H. Yamagishi, Successful gene transfer into dendritic cells with cationized gelatin and plasmid DNA complexes via a phagocytosis-dependent mechanism, Anticancer Res. 26 (2006) 1957-1963.

Google Scholar

[91] H. Fujii, A. Matsuyama, H. Komoda, M. Sasai, M. Suzuki, T. Asano, Y. Doki, M. Kirihata, K. Ono, Y. Tabata, Y. Kaneda, Y. Sawa, C.M. Lee, Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo, Radiat. Oncol. 6 (2011) 8.

DOI: 10.1186/1748-717x-6-8

Google Scholar

[92] P.G. Rigby, Prolongation of Survival of Tumour-bearing Animals by Transfer of "Immune" RNA with DEAE Dextran, Nature 221 (1969) 968-969.

DOI: 10.1038/221968a0

Google Scholar

[93] T. Azzam, H. Eliyahu, A. Makovitzki, M. Linial, A.J. Domb, Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection, J. Control Release 96 (2004) 309-323.

DOI: 10.1016/j.jconrel.2004.01.022

Google Scholar

[94] Y. Song, L. Zhang, W. Gan, J. Zhou, L. Zhang, Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery, Colloids Surf., B 83 (2011) 313-320.

DOI: 10.1016/j.colsurfb.2010.11.039

Google Scholar

[95] Y. Song, Y. Sun, X. Zhang, J. Zhou, L. Zhang, Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules 9 (2008) 2259-2264.

DOI: 10.1021/bm800429a

Google Scholar

[96] S.B. Rao, C.P. Sharma, Use of chitosan as a biomaterial: studies on its safety and hemostatic potential, J. Biomed. Mater. Res. 34 (1997) 21-28.

DOI: 10.1002/(sici)1097-4636(199701)34:1<21::aid-jbm4>3.0.co;2-p

Google Scholar

[97] T.J. Aspden, J.D. Mason, N.S. Jones, J. Lowe, O. Skaugrud, L. Illum, Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers, J. Pharm. Sci. 86 (1997) 509-513.

DOI: 10.1021/js960182o

Google Scholar

[98] N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Deliv. Rev. 62 (2010) 83-99.

DOI: 10.1016/j.addr.2009.07.019

Google Scholar

[99] P. Erbacher, S. Zou, T. Bettinger, A.M. Steffan, J.S. Remy, Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability, Pharm. Res. 15 (1998) 1332-1339.

DOI: 10.1023/a:1011981000671

Google Scholar

[100] R. Belalia, S. Grelier, M. Benaissa, V. Coma, New bioactive biomaterials based on quaternized chitosan, J. Agric. Food Chem. 56 (2008) 1582-1588.

DOI: 10.1021/jf071717+

Google Scholar

[101] A. Kabanov, J. Zhu, V. Alakhov, Pluronic block copolymers for gene delivery, Adv. Genet. 53 (2005) 231-261.

DOI: 10.1016/s0065-2660(05)53009-8

Google Scholar

[102] A. El-Aneed, An overview of current delivery systems in cancer gene therapy, J. Control. Release 94 (2004) 1-14.

DOI: 10.1016/j.jconrel.2003.09.013

Google Scholar

[103] E.D. Ivanova, N.I. Ivanova, M.D. Apostolova, S.C. Turmanova, I.V. Dimitrov, Polymer gene delivery vectors encapsulated in thermally sensitive bioreducible shell, Bioorg. Med. Chem. Lett. 23 (2013) 4080-4084.

DOI: 10.1016/j.bmcl.2013.05.055

Google Scholar

[104] S.C. De Smedt, J. Demeester, W.E. Hennink, Cationic polymer based gene delivery systems, Pharm. Res. 17 (2000) 113-126.

Google Scholar

[105] K. Maruyama, T. Takizawa, T. Yuda, S.J. Kennel, L. Huang, M. Iwatsuru, Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies, BBA 1234 (1995) 74-80.

DOI: 10.1016/0005-2736(94)00263-o

Google Scholar

[106] B. Brissault, A. Kichler, C. Guis, C. Leborgue, D. Danos, H. Charadame, synthesis of linear polyethyleneimine derivatives for DNA transfection, Bioconjugate Chem. 14 (2003) 581-587.

DOI: 10.1021/bc0200529

Google Scholar

[107] C.M. Ward, M.L. Read, L.W. Seymour, Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy, Blood 97 (2001) 2221-2229.

DOI: 10.1182/blood.v97.8.2221

Google Scholar

[108] S.Y. Tzeng, H. Guerrero-Ca´ zares, E.E. Martinez, J.C. Sunshine, A. Quin˜ ones-Hinojosa, J.J. Green, Non-viral gene delivery nanoparticles based on Poly (β-amino esters) for treatment of glioblastoma, Biomaterials 32 (2011) 5402-5410.

DOI: 10.1016/j.biomaterials.2011.04.016

Google Scholar

[109] N. Montserrat, E. Garreta, F. Gonza´ lez, J. Gutie´ rrez, C. Eguiza´ bal, V. Ramos, S. Borro, J.C.I. Belmonte, Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-β-amino Esters As the Non-viral Gene Delivery System, J. Biol. Chem. 286 (2011) 12417-12428.

DOI: 10.1074/jbc.m110.168013

Google Scholar

[110] K.C. Wood, S.R. Little, R. Langer, P.T. Hammond, A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery, Angew. Chem. Int. Edn. 44 (2005) 6704-6708.

DOI: 10.1002/anie.200502152

Google Scholar

[111] O. Boussif, F. Lezoualc'h, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, J.P. Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92 (1995) 7297-7301.

DOI: 10.1073/pnas.92.16.7297

Google Scholar

[112] H.J. Kim, M.S. Kwon, J.S. Choi, B.H. Kim, J.K. Yoon, K. Kim, J.-S. Park, Synthesis and characterization of degradable polycationic polymers as gene delivery carriers, Bull. Korean Chem. Soc. 28 (2007) 63-67.

DOI: 10.5012/bkcs.2007.28.1.063

Google Scholar

[113] M.A. Gosselin, W. Guo, R.J. Lee, Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine, Bioconjugate Chem. 12 (2001) 989-994.

DOI: 10.1021/bc0100455

Google Scholar

[114] M.A. Wolfert, P.R. Dash, O. Nazarova, D. Oupický, L.W. Seymour, S. Smart, J. Strohalm, K. Ulbrich, Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA, Bioconjugate Chem. 10 (1999) 993-1004.

DOI: 10.1021/bc990025r

Google Scholar

[115] U.K. Laemmli, Characterization of DNA condensates induced by poly(ethylene oxide) and poly-L-lysine, Proc. Natl. Acad. Sci. USA 72 (1975) 4288-4292.

DOI: 10.1073/pnas.72.11.4288

Google Scholar

[116] Y.H. Choi, F. Liu, J.S. Kim, Y.K. Choi, J.S. Park, S.W. Kim, Polyethylene glycol-grafted poly-l-lysine as polymeric gene carrier, J. Control. Release 54 (1998) 39-48.

DOI: 10.1016/s0168-3659(97)00174-0

Google Scholar

[117] M. Morille, C. Passirani, A. Vonarbourg, A. Clavreul, J.P. Benoit, Progress in developing cationic vectors for non-viral systemic gene therapy against cancer, Biomaterials 29 (2008) 3477-3496.

DOI: 10.1016/j.biomaterials.2008.04.036

Google Scholar

[118] A. Akinc, D.G. Anderson, D.M. Lynn, R. Langer, Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery, Bioconjugate Chem. 14 (2003) 979-988.

DOI: 10.1021/bc034067y

Google Scholar

[119] D.M. Lynn, R. Langer, Degradable poly(β-amino esters):  Synthesis, characterization, and self-assembly with plasmid DNA, J. Am. Chem. Soc. 122 (2000) 10761-10768.

DOI: 10.1021/ja0015388

Google Scholar

[120] J.F. Kukowska-Latallo, A.U. Bielinska, J. Johnson, R. Spindler, D.A. Tomalia, J.R. Baker Jr, Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers,Proc. Natl. Acad. Sci. USA93 (1996) 4897-4902.

DOI: 10.1073/pnas.93.10.4897

Google Scholar

[121] M.X. Tang, C.T. Redemann, F.C. Szoka, In vitro gene delivery by degradedpolyamidoamine dendrimers, Bioconjug. Chem. 7 (1996) 703-714.

DOI: 10.1021/bc9600630

Google Scholar

[122] M. Singh, M. Briones, G. Ott, D. O'Hagan, Cationic microparticles: A potent delivery system for DNA vaccines, Proc. Natl. Acad. Sci. USA 97 (2000) 811-816.

DOI: 10.1073/pnas.97.2.811

Google Scholar

[123] C.G. Oster, N. Kim, L. Grode, L. Barbu-Tudoran, A.K. Schaper, S.H.E. Kaufmann, T. Kissel, Cationic microparticles consisting of poly(lactide-co-glycolide) and polyethyleneimine as carriers systems for parental DNA vaccination, J. Control. Release 104 (2005) 359-377.

DOI: 10.1016/j.jconrel.2005.02.004

Google Scholar

[124] S. Li, Z. Ma, Nonviral gene therapy, Curr. Gene Ther. 1 (2001) 201-226.

Google Scholar

[125] A.M. Funhoff, S. Monge, R. Teeuwen, G.A. Koning, N.M.E. Schuurmans-Nieuwenbroek, D.J.A. Crommelin, D.M. Haddleton, W.E. Hennink, C.F.V. Nostrum, PEG shielded polymeric double-layered micelles for gene delivery, J. Control. Rel. 102 (2005) 711-724.

DOI: 10.1016/j.jconrel.2004.11.005

Google Scholar

[126] U. Rungsardthong, M. Deshpande, L. Bailey, M. Vamvakaki, S.P. Armes, M.C. Garnett, S. Stolnik, Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy, J. Control. Release 73 (2001) 359-380.

DOI: 10.1016/s0168-3659(01)00295-4

Google Scholar

[127] W. Miao, G. Shim, S. Lee, Y.-K. Oh, Structure-dependent photo thermal anticancer effects of carbon-based photo-responsive nanomaterials, Biomaterials 35 (2014) 4058-4065.

DOI: 10.1016/j.biomaterials.2014.01.043

Google Scholar

[128] J.F. Tan, R. Ravi, H.P. Too, T.A. Hatoon, K.C. Tam, Association behavior of biotinylated and non-biotinylated poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate), Biomacromolecules 6 (2005) 498-506.

DOI: 10.1021/bm049426m

Google Scholar

[129] M. Iijima, Y. Nagasaki, T. Okada, M. Kato, K. Kataoka, Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers, Macromolecules 32 (1999) 1140-1146.

DOI: 10.1021/ma9815962

Google Scholar

[130] K. Matsumoto, H. Matsuoa, Synthesis of core-crosslinked carbosilane block copolymer micelles and their thermal transformation to silicon-based ceramics nanoparticles, J. Polym. Sci. Part A: Polym. Chem. 43 (2005) 3778-3787.

DOI: 10.1002/pola.20879

Google Scholar

[131] F. Henselwood, G. Liu, Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate) - block-poly(acrylic acid), Macromolecules 30 (1997) 488-493.

DOI: 10.1021/ma961401v

Google Scholar

[132] G. Liu, Diblock copolymer nanostructures, Macromol. Symp.113 (1997) 233-248.

Google Scholar

[133] Q.G. Ma, E.E. Remsen, T. Kowalewski, K.L. Wooley, Two-dimensional, shell-cross-linked nanoparticle arrays, J. Am Chem. Soc.123 (2001) 4627-4628.

DOI: 10.1021/ja0156542

Google Scholar

[134] Y. Wang, L.S. Wang, S.H. Goh, Y.Y. Yang, Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery, Biomacromolecules 8 (2007) 1028-1037.

DOI: 10.1021/bm061051c

Google Scholar

[135] Y. Wang, S. Gao, W.H. Ye, S.H. Yoon, Y.Y. Yang, Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer, Nat. Mater. 5 (2006) 791-796.

DOI: 10.1038/nmat1737

Google Scholar

[136] W.F. Anderson, Human Gene Therapy, Nature 392 (1998) 25-30.

Google Scholar

[137] G. Bauer, J.S. Anderson, Clinical applications of HIV gene therapy in gene therapy for HIV, Biochem. Molecular Biol. 8 (2014) 55-62.

DOI: 10.1007/978-1-4939-0434-1_8

Google Scholar

[138] M.J. Wright, E. Rosenthal, L. Stewart, L.M.L. Wightman, A.D. Miller, D.S. Latchman, M.S. Marber, Marber, β-Galactosidase staining following intracoronary infusion of cationic liposomes in the in vivo rabbit heart is produced by microinfarction rather than effective gene transfer: a cautionary tale, Gene Ther. 5 (1998) 301-308.

DOI: 10.1038/sj.gt.3300590

Google Scholar

[139] S.K. Tripathy, H.B. Black, E. Goldwasser, J.M. Leiden, Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors, Nature Med. 2 (1996) 545-550.

DOI: 10.1038/nm0596-545

Google Scholar

[140] M.J. Mann, G.H. Gibbons, H. Hutchinson, R.S. Poston, E.G. Hoyt, R.C. Robbins, V.J. Dzau, Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues, Proc. Natl. Acad. Sci. USA 96 (1999) 6411-6416.

DOI: 10.1073/pnas.96.11.6411

Google Scholar

[141] M. Cavazzana- Calvo, A. Thrasher, F. Mavilio, The future of gene therapy, Nature 427 (2004) 779-781.

DOI: 10.1038/427779a

Google Scholar

[142] F.J. Verban, I.M. Van Dam, Y. Takakura, M. Hashida, W.E. Hennink, G. Storm, C. Oussoren, Intravenous fate of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes, Eur. J. Pharm. Sci. 20 (2003) 419-427.

DOI: 10.1016/j.ejps.2003.09.005

Google Scholar