Congenital Heart Diseases and Biotechnology: Connecting by Connexin

Article Preview

Abstract:

Heart development is a precisely harmonized process of cellular proliferation, migration, differentiation, and integrated morphogenetic interactions, and therefore it is extremely vulnerable to developmental defects that cause congenital heart diseases (CHD). One of the major causes of CHD has been shown to be the mutations in key cardiac channel-forming proteins namely, connexins (Cxs). Cxs are tetra-spanning transmembrane proteins that form gap junction channels and hemichannels on cellular membrane. They allow passage of small molecules or ions between adjacent cells or between cells and the extracellular environment. Studies have revealed that the spatiotemporal expression of Cxs mainly, Cx31.9, Cx40, Cx43, and Cx45 is essentially involved in early developmental events, morphogenetic transformations, maturation, and functional significance of heart. Our lab and others have shown that mutations in gap junction proteins could result in impaired trafficking, misfolding, and improper channel function of these proteins. It has also been shown that differential expressions of cardiac Cxs are associated with pathophysiological conditions of heart. Collectively, these conditions are coupled with abrogated or modified functionality of relevant channels in cardiac tissue, which are associated with many pathological situations, including CHD. Since CHD are a major cause of morbidity, therefore recovery of such kind of heart defects associated with Cxs is extremely important but remains highly challenging. In this review, we will summarize the role of Cxs in development, morphogenesis, maturation, normal function, and pathology of heart, and propose possible bioengineering techniques to recover defects in cardiac tissues related to the modified functions of Cxs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-112

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Schwedler, A. Lindinger, P.E. Lange, U. Sax, J. Olchvary, B. Peters, U. Bauer, H.W. Hense, Frequency and spectrum of congenital heart defects among live births in Germany : a study of the Competence Network for Congenital Heart Defects, Clin Res Cardiol 100 (2011) 1111-1117.

DOI: 10.1007/s00392-011-0355-7

Google Scholar

[2] R. Knowles, I. Griebsch, C. Dezateux, J. Brown, C. Bull, C. Wren, Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis, Health Technol Assess 9 (2005) 1-152, iii-iv.

DOI: 10.3310/hta9440

Google Scholar

[3] J.N. Kirkpatrick, B. Kaufman, Why should we care about ethical and policy challenges in congenital heart disease? World J Pediatr Congenit Heart Surg 4 (2013) 7-9.

DOI: 10.1177/2150135112454666

Google Scholar

[4] S. Yuan, S. Zaidi, M. Brueckner, Congenital heart disease: emerging themes linking genetics and development, Curr Opin Genet Dev 23 (2013) 352-359.

DOI: 10.1016/j.gde.2013.05.004

Google Scholar

[5] A. Salameh, K. Blanke, I. Daehnert, Role of connexins in human congenital heart disease: the chicken and egg problem, Front Pharmacol 4 (2013) 70.

DOI: 10.3389/fphar.2013.00070

Google Scholar

[6] S.C. Mitchell, S.B. Korones, H.W. Berendes, Congenital heart disease in 56,109 births. Incidence and natural history, Circulation 43 (1971) 323-332.

DOI: 10.1161/01.cir.43.3.323

Google Scholar

[7] S.F. Seides, R.J. Shemin, A.G. Morrow, Congenital cardiac abnormalities in monozygotic twins. Report and review of the literature, Br Heart J 42 (1979) 742-745.

DOI: 10.1136/hrt.42.6.742

Google Scholar

[8] K.Y. Lin, L.C. D'Alessandro, E. Goldmuntz, Genetic testing in congenital heart disease: ethical considerations, World J Pediatr Congenit Heart Surg 4 (2013) 53-57.

DOI: 10.1177/2150135112459523

Google Scholar

[9] G.M. Blue, E.P. Kirk, G.F. Sholler, R.P. Harvey, D.S. Winlaw, Congenital heart disease: current knowledge about causes and inheritance, Med J Aust 197 (2012) 155-159.

DOI: 10.5694/mja12.10811

Google Scholar

[10] A.C. Fahed, B.D. Gelb, J.G. Seidman, C.E. Seidman, Genetics of congenital heart disease: the glass half empty, Circ Res 112 (2013) 707-720.

DOI: 10.1161/circresaha.112.300853

Google Scholar

[11] N. Sultana, K. Nag, K. Hoshijima, D.W. Laird, A. Kawakami, S. Hirose, Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression, Proc Natl Acad Sci U S A 105 (2008) 4763-4768.

DOI: 10.1073/pnas.0708451105

Google Scholar

[12] P. Barnett, M. van den Boogaard, V. Christoffels, Localized and temporal gene regulation in heart development, Curr Top Dev Biol 100 (2012) 171-201.

DOI: 10.1016/b978-0-12-387786-4.00004-x

Google Scholar

[13] D.J. McCulley, B.L. Black, Transcription factor pathways and congenital heart disease, Curr Top Dev Biol 100 (2012) 253-277.

Google Scholar

[14] N.V. Munshi, Gene regulatory networks in cardiac conduction system development, Circ Res 110 (2012) 1525-1537.

DOI: 10.1161/circresaha.111.260026

Google Scholar

[15] D. Staudt, D. Stainier, Uncovering the molecular and cellular mechanisms of heart development using the zebrafish, Annu Rev Genet 46 (2012) 397-418.

DOI: 10.1146/annurev-genet-110711-155646

Google Scholar

[16] S. John, D. Cesario, J.N. Weiss, Gap junctional hemichannels in the heart, Acta Physiol Scand 179 (2003) 23-31.

DOI: 10.1046/j.1365-201x.2003.01197.x

Google Scholar

[17] W.H. Evans, E. De Vuyst, L. Leybaert, The gap junction cellular internet: connexin hemichannels enter the signalling limelight, Biochem. J 397 (2006) 1-14.

DOI: 10.1042/bj20060175

Google Scholar

[18] D.W. Laird, Life cycle of connexins in health and disease, Biochem J 394 (2006) 527-543.

Google Scholar

[19] M.S. Nielsen, L. Nygaard Axelsen, P.L. Sorgen, V. Verma, M. Delmar, N.H. Holstein-Rathlou, Gap junctions, Compr. Physiol. 2 (2012) 1981-2035.

DOI: 10.1002/cphy.c110051

Google Scholar

[20] J.W. Smyth, R.M. Shaw, The gap junction life cycle, Heart Rhythm. 9 (2012) 151-153.

DOI: 10.1016/j.hrthm.2011.07.028

Google Scholar

[21] J. Simek, J. Churko, Q. Shao, D.W. Laird, Cx43 has distinct mobility within plasma-membrane domains, indicative of progressive formation of gap-junction plaques, J. Cell. Sci. 122 (2009) 554-562.

DOI: 10.1242/jcs.036970

Google Scholar

[22] A. Chandrasekhar, A.K. Bera, Hemichannels: permeants and their effect on development, physiology and death, Cell Biochem. Funct 30 (2012) 89-100.

DOI: 10.1002/cbf.2794

Google Scholar

[23] F. Abascal, R. Zardoya, Evolutionary analyses of gap junction protein families, Biochim Biophys. Acta 1828 (2013) 4-14.

DOI: 10.1016/j.bbamem.2012.02.007

Google Scholar

[24] V. Cruciani, S.O. Mikalsen, The vertebrate connexin family, Cell Mol Life Sci 63 (2006) 1125-1140.

DOI: 10.1007/s00018-005-5571-8

Google Scholar

[25] G. Sohl, K. Willecke, Gap junctions and the connexin protein family, Cardiovasc Res 62 (2004) 228-232.

DOI: 10.1016/j.cardiores.2003.11.013

Google Scholar

[26] C.A. Dunn, V. Su, A.F. Lau, P.D. Lampe, Activation of Akt, not connexin 43 protein ubiquitination, regulates gap junction stability, J. Biol. Chem. 287 (2012) 2600-2607.

DOI: 10.1074/jbc.m111.276261

Google Scholar

[27] P.D. Lampe, A.F. Lau, The effects of connexin phosphorylation on gap junctional communication, Int J Biochem Cell Biol 36 (2004) 1171-1186.

DOI: 10.1016/s1357-2725(03)00264-4

Google Scholar

[28] J. Kronengold, E.B. Trexler, F.F. Bukauskas, T.A. Bargiello, V.K. Verselis, Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels, J Gen Physiol 122 (2003) 389-405.

DOI: 10.1085/jgp.200308861

Google Scholar

[29] S. Maeda, S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, T. Tsukihara, Structure of the connexin 26 gap junction channel at 3.5 A resolution, Nature 458 (2009) 597-602.

DOI: 10.1038/nature07869

Google Scholar

[30] X.W. Zhou, A. Pfahnl, R. Werner, A. Hudder, A. Llanes, A. Luebke, G. Dahl, Identification of a pore lining segment in gap junction hemichannels, Biophys J 72 (1997) 1946-1953.

DOI: 10.1016/s0006-3495(97)78840-4

Google Scholar

[31] J.L. Solan, P.D. Lampe, Connexin43 phosphorylation: structural changes and biological effects, Biochem J 419 (2009) 261-272.

DOI: 10.1042/bj20082319

Google Scholar

[32] S. Buvinic, G. Almarza, M. Bustamante, M. Casas, J. Lopez, M. Riquelme, J.C. Saez, J.P. Huidobro-Toro, E. Jaimovich, ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle, J Biol Chem 284 (2009) 34490-34505.

DOI: 10.1074/jbc.m109.057315

Google Scholar

[33] P.P. Cherian, A.J. Siller-Jackson, S. Gu, X. Wang, L.F. Bonewald, E. Sprague, J.X. Jiang, Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin, Mol Biol Cell 16 (2005) 3100-3106.

DOI: 10.1091/mbc.e04-10-0912

Google Scholar

[34] M. Ruiz-Meana, A. Rodriguez-Sinovas, A. Cabestrero, K. Boengler, G. Heusch, D. Garcia-Dorado, Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury, Cardiovasc Res 77 (2008) 325-333.

DOI: 10.1093/cvr/cvm062

Google Scholar

[35] M. Nemer, Genetic insights into normal and abnormal heart development, Cardiovasc Pathol 17 (2008) 48-54.

Google Scholar

[36] N.J. Severs, The cardiac muscle cell, Bioessays 22 (2000) 188-199.

Google Scholar

[37] S. Verheule, S. Kaese, Connexin diversity in the heart: insights from transgenic mouse models, Front Pharmacol 4 (2013) 81.

DOI: 10.3389/fphar.2013.00081

Google Scholar

[38] S.C. Chen, L.M. Davis, E.M. Westphale, E.C. Beyer, J.E. Saffitz, Expression of multiple gap junction proteins in human fetal and infant hearts, Pediatr Res 36 (1994) 561-566.

DOI: 10.1203/00006450-199411000-00002

Google Scholar

[39] N.C. Chi, M. Bussen, K. Brand-Arzamendi, C. Ding, J.E. Olgin, R.M. Shaw, G.R. Martin, D.Y. Stainier, Cardiac conduction is required to preserve cardiac chamber morphology, Proc Natl Acad Sci U S A 107 (2010) 14662-14667.

DOI: 10.1073/pnas.0909432107

Google Scholar

[40] S.R. Coppen, R.A. Kaba, D. Halliday, E. Dupont, J.N. Skepper, S. Elneil, N.J. Severs, Comparison of connexin expression patterns in the developing mouse heart and human foetal heart, Mol Cell Biochem 242 (2003) 121-127.

DOI: 10.1007/978-1-4757-4712-6_16

Google Scholar

[41] S.B. Danik, F. Liu, J. Zhang, H.J. Suk, G.E. Morley, G.I. Fishman, D.E. Gutstein, Modulation of cardiac gap junction expression and arrhythmic susceptibility, Circ Res 95 (2004) 1035-1041.

DOI: 10.1161/01.res.0000148664.33695.2a

Google Scholar

[42] B. Delorme, E. Dahl, T. Jarry-Guichard, J.P. Briand, K. Willecke, D. Gros, M. Theveniau-Ruissy, Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system, Circ Res 81 (1997) 423-437.

DOI: 10.1161/01.res.81.3.423

Google Scholar

[43] L.M. Davis, M.E. Rodefeld, K. Green, E.C. Beyer, J.E. Saffitz, Gap junction protein phenotypes of the human heart and conduction system, J Cardiovasc Electrophysiol 6 (1995) 813-822.

DOI: 10.1111/j.1540-8167.1995.tb00357.x

Google Scholar

[44] C. Picoli, V. Nouvel, F. Aubry, M. Reboul, A. Duchene, T. Jeanson, J. Thomasson, F. Mouthon, M. Charveriat, Human connexin channel specificity of classical and new gap junction inhibitors, J Biomol Screen 17 (2012) 1339-1347.

DOI: 10.1177/1087057112452594

Google Scholar

[45] L. Miquerol, L. Dupays, M. Theveniau-Ruissy, S. Alcolea, T. Jarry-Guichard, P. Abran, D. Gros, Gap junctional connexins in the developing mouse cardiac conduction system, Novartis Found Symp 250 (2003) 80-98; discussion 98-109, 276-109.

DOI: 10.1002/0470868066.ch6

Google Scholar

[46] M.A. Beardslee, J.G. Laing, E.C. Beyer, J.E. Saffitz, Rapid turnover of connexin43 in the adult rat heart, Circ Res 83 (1998) 629-635.

DOI: 10.1161/01.res.83.6.629

Google Scholar

[47] A. Salameh, A. Wustmann, S. Karl, K. Blanke, D. Apel, D. Rojas-Gomez, H. Franke, F.W. Mohr, J. Janousek, S. Dhein, Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43, Circ Res 106 (2010) 1592-1602.

DOI: 10.1161/circresaha.109.214429

Google Scholar

[48] A.G. Reaume, P.A. de Sousa, S. Kulkarni, B.L. Langille, D. Zhu, T.C. Davies, S.C. Juneja, G.M. Kidder, J. Rossant, Cardiac malformation in neonatal mice lacking connexin43, Science 267 (1995) 1831-1834.

DOI: 10.1126/science.7892609

Google Scholar

[49] J. Ya, E.B. Erdtsieck-Ernste, P.A. de Boer, M.J. van Kempen, H. Jongsma, D. Gros, A.F. Moorman, W.H. Lamers, Heart defects in connexin43-deficient mice, Circ Res 82 (1998) 360-366.

DOI: 10.1161/01.res.82.3.360

Google Scholar

[50] R.J. Francis, C.W. Lo, Primordial germ cell deficiency in the connexin 43 knockout mouse arises from apoptosis associated with abnormal p.53 activation, Development 133 (2006) 3451-3460.

DOI: 10.1242/dev.02506

Google Scholar

[51] C.W. Lo, M.F. Cohen, G.Y. Huang, B.O. Lazatin, N. Patel, R. Sullivan, C. Pauken, S.M. Park, Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells, Dev Genet 20 (1997) 119-132.

DOI: 10.1002/(sici)1520-6408(1997)20:2<119::aid-dvg5>3.0.co;2-a

Google Scholar

[52] J.L. Ewart, M.F. Cohen, R.A. Meyer, G.Y. Huang, A. Wessels, R.G. Gourdie, A.J. Chin, S.M. Park, B.O. Lazatin, S. Villabon, C.W. Lo, Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene, Development 124 (1997) 1281-1292.

DOI: 10.1242/dev.124.7.1281

Google Scholar

[53] S.A. Thomas, R.B. Schuessler, C.I. Berul, M.A. Beardslee, E.C. Beyer, M.E. Mendelsohn, J.E. Saffitz, Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: evidence for chamber-specific molecular determinants of conduction, Circulation 97 (1998) 686-691.

DOI: 10.1161/01.cir.97.7.686

Google Scholar

[54] S.H. Britz-Cunningham, M.M. Shah, C.W. Zuppan, W.H. Fletcher, Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality, N Engl J Med 332 (1995) 1323-1329.

DOI: 10.1056/nejm199505183322002

Google Scholar

[55] N. Kalcheva, J. Qu, N. Sandeep, L. Garcia, J. Zhang, Z. Wang, P.D. Lampe, S.O. Suadicani, D.C. Spray, G.I. Fishman, Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia, Proc Natl Acad Sci U S A 104 (2007) 20512-20516.

DOI: 10.1073/pnas.0705472105

Google Scholar

[56] J.L. Manias, I. Plante, X.Q. Gong, Q. Shao, J. Churko, D. Bai, D.W. Laird, Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant, Cardiovasc Res 80 (2008) 385-395.

DOI: 10.1093/cvr/cvn203

Google Scholar

[57] J.M. Tuomi, K. Tyml, D.L. Jones, Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse, Am J Physiol Heart Circ Physiol 300 (2011) H1402-1411.

DOI: 10.1152/ajpheart.01094.2010

Google Scholar

[58] R. Dobrowolski, P. Sasse, J.W. Schrickel, M. Watkins, J.S. Kim, M. Rackauskas, C. Troatz, A. Ghanem, K. Tiemann, J. Degen, F.F. Bukauskas, R. Civitelli, T. Lewalter, B.K. Fleischmann, K. Willecke, The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans, Hum Mol Genet 17 (2008) 539-554.

DOI: 10.1093/hmg/ddm329

Google Scholar

[59] Q. Yu, Y. Shen, B. Chatterjee, B.H. Siegfried, L. Leatherbury, J. Rosenthal, J.F. Lucas, A. Wessels, C.F. Spurney, Y.J. Wu, M.L. Kirby, K. Svenson, C.W. Lo, ENU induced mutations causing congenital cardiovascular anomalies, Development 131 (2004) 6211-6223.

DOI: 10.1242/dev.01543

Google Scholar

[60] P. Chen, L.J. Xie, G.Y. Huang, X.Q. Zhao, C. Chang, Mutations of connexin43 in fetuses with congenital heart malformations, Chin Med J (Engl) 118 (2005) 971-976.

Google Scholar

[61] B. Wang, Q. Wen, X. Xie, S. Liu, M. Liu, Y. Tao, Z. Li, P. Suo, A. Shen, J. Wang, X. Ma, Mutation analysis of Connexon43 gene in Chinese patients with congenital heart defects, Int J Cardiol 145 (2010) 487-489.

DOI: 10.1016/j.ijcard.2009.06.026

Google Scholar

[62] G.Y. Huang, L.J. Xie, K.L. Linask, C. Zhang, X.Q. Zhao, Y. Yang, G.M. Zhou, Y.J. Wu, L. Marquez-Rosado, D.B. McElhinney, E. Goldmuntz, C. Liu, P.D. Lampe, B. Chatterjee, C.W. Lo, Evaluating the role of connexin43 in congenital heart disease: Screening for mutations in patients with outflow tract anomalies and the analysis of knock-in mouse models, J Cardiovasc Dis Res 2 (2011) 206-212.

DOI: 10.4103/0975-3583.89804

Google Scholar

[63] S. Elenes, A.D. Martinez, M. Delmar, E.C. Beyer, A.P. Moreno, Heterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43, Biophys J 81 (2001) 1406-1418.

DOI: 10.1016/s0006-3495(01)75796-7

Google Scholar

[64] P.A. Guerrero, R.B. Schuessler, L.M. Davis, E.C. Beyer, C.M. Johnson, K.A. Yamada, J.E. Saffitz, Slow ventricular conduction in mice heterozygous for a connexin43 null mutation, J Clin Invest 99 (1997) 1991-1998.

DOI: 10.1172/jci119367

Google Scholar

[65] G.E. Morley, D. Vaidya, J. Jalife, Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping, J Cardiovasc Electrophysiol 11 (2000) 375-377.

DOI: 10.1111/j.1540-8167.1999.tb00192.x

Google Scholar

[66] D.E. Gutstein, G.E. Morley, G.I. Fishman, Conditional gene targeting of connexin43: exploring the consequences of gap junction remodeling in the heart, Cell Commun Adhes 8 (2001) 345-348.

DOI: 10.3109/15419060109080751

Google Scholar

[67] D. Eckardt, M. Theis, J. Degen, T. Ott, H.V. van Rijen, S. Kirchhoff, J.S. Kim, J.M. de Bakker, K. Willecke, Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion, J Mol Cell Cardiol 36 (2004) 101-110.

DOI: 10.1016/j.yjmcc.2003.10.006

Google Scholar

[68] M. Kumai, K. Nishii, K. Nakamura, N. Takeda, M. Suzuki, Y. Shibata, Loss of connexin45 causes a cushion defect in early cardiogenesis, Development 127 (2000) 3501-3512.

DOI: 10.1242/dev.127.16.3501

Google Scholar

[69] L.M. Davis, H.L. Kanter, E.C. Beyer, J.E. Saffitz, Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties, J Am Coll Cardiol 24 (1994) 1124-1132.

DOI: 10.1016/0735-1097(94)90879-6

Google Scholar

[70] K. Nishii, M. Kumai, K. Egashira, T. Miwa, K. Hashizume, Y. Miyano, Y. Shibata, Mice lacking connexin45 conditionally in cardiac myocytes display embryonic lethality similar to that of germline knockout mice without endocardial cushion defect, Cell Commun Adhes 10 (2003) 365-369.

DOI: 10.1080/714040454

Google Scholar

[71] T. Hisamitsu, T.Y. Nakamura, S. Wakabayashi, Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy, Mol Cell Biol 32 (2012) 3265-3280.

DOI: 10.1128/mcb.00145-12

Google Scholar

[72] C.P. Chang, J.R. Neilson, J.H. Bayle, J.E. Gestwicki, A. Kuo, K. Stankunas, I.A. Graef, G.R. Crabtree, A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis, Cell 118 (2004) 649-663.

DOI: 10.1016/j.cell.2004.08.010

Google Scholar

[73] M.D. Combs, C.M. Braitsch, A.W. Lange, J.F. James, K.E. Yutzey, NFATC1 promotes epicardium-derived cell invasion into myocardium, Development 138 (2011) 1747-1757.

DOI: 10.1242/dev.060996

Google Scholar

[74] B. Zhou, R.Q. Cron, B. Wu, A. Genin, Z. Wang, S. Liu, P. Robson, H.S. Baldwin, Regulation of the murine Nfatc1 gene by NFATc2, J Biol Chem 277 (2002) 10704-10711.

DOI: 10.1074/jbc.m107068200

Google Scholar

[75] M. Frank, A. Wirth, R.P. Andrie, M.M. Kreuzberg, R. Dobrowolski, G. Seifert, S. Offermanns, G. Nickenig, K. Willecke, J.W. Schrickel, Connexin45 provides optimal atrioventricular nodal conduction in the adult mouse heart, Circ Res 111 (2012) 1528-1538.

DOI: 10.1161/circresaha.112.270561

Google Scholar

[76] M. Bao, E.M. Kanter, R.Y. Huang, S. Maxeiner, M. Frank, Y. Zhang, R.B. Schuessler, T.W. Smith, R.R. Townsend, H.W. Rohrs, V.M. Berthoud, K. Willecke, J.G. Laing, K.A. Yamada, Residual Cx45 and its relationship to Cx43 in murine ventricular myocardium, Channels (Austin) 5 (2011) 489-499.

DOI: 10.4161/chan.5.6.18523

Google Scholar

[77] J.W. Schrickel, M.M. Kreuzberg, A. Ghanem, J.S. Kim, M. Linhart, R. Andrie, K. Tiemann, G. Nickenig, T. Lewalter, K. Willecke, Normal impulse propagation in the atrioventricular conduction system of Cx30.2/Cx40 double deficient mice, J Mol Cell Cardiol 46 (2009) 644-652.

DOI: 10.1016/j.yjmcc.2009.02.012

Google Scholar

[78] K. Grikscheit, N. Thomas, A.F. Bruce, S. Rothery, J. Chan, N.J. Severs, E. Dupont, Coexpression of connexin 45 with connexin 43 decreases gap junction size, Cell Commun Adhes 15 (2008) 185-193.

DOI: 10.1080/15419060802013943

Google Scholar

[79] B. Delorme, E. Dahl, T. Jarry-Guichard, I. Marics, J.P. Briand, K. Willecke, D. Gros, M. Theveniau-Ruissy, Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system, Dev Dyn 204 (1995) 358-371.

DOI: 10.1002/aja.1002040403

Google Scholar

[80] A.M. Simon, D.A. Goodenough, D.L. Paul, Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block, Curr Biol 8 (1998) 295-298.

DOI: 10.1016/s0960-9822(98)70113-7

Google Scholar

[81] B. Sankova, J. Benes, Jr., E. Krejci, L. Dupays, M. Theveniau-Ruissy, L. Miquerol, D. Sedmera, The effect of connexin40 deficiency on ventricular conduction system function during development, Cardiovasc Res 95 (2012) 469-479.

DOI: 10.1093/cvr/cvs210

Google Scholar

[82] S. Kirchhoff, J.S. Kim, A. Hagendorff, E. Thonnissen, O. Kruger, W.H. Lamers, K. Willecke, Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice, Circ Res 87 (2000) 399-405.

DOI: 10.1161/01.res.87.5.399

Google Scholar

[83] H. Gu, F.C. Smith, S.M. Taffet, M. Delmar, High incidence of cardiac malformations in connexin40-deficient mice, Circ Res 93 (2003) 201-206.

DOI: 10.1161/01.res.0000084852.65396.70

Google Scholar

[84] K.L. Holler, T.J. Hendershot, S.E. Troy, J.W. Vincentz, A.B. Firulli, M.J. Howard, Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development, Dev Biol 341 (2010) 291-304.

DOI: 10.1016/j.ydbio.2010.02.001

Google Scholar

[85] V. Guida, R. Ferese, M. Rocchetti, M. Bonetti, A. Sarkozy, S. Cecchetti, V. Gelmetti, F. Lepri, M. Copetti, G. Lamorte, M. Cristina Digilio, B. Marino, A. Zaza, J. den Hertog, B. Dallapiccola, A. De Luca, A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot, Eur J Hum Genet 21 (2013) 69-75.

DOI: 10.1038/ejhg.2012.109

Google Scholar

[86] O. Traub, R. Eckert, H. Lichtenberg-Frate, C. Elfgang, B. Bastide, K.H. Scheidtmann, D.F. Hulser, K. Willecke, Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells, Eur J Cell Biol 64 (1994) 101-112.

Google Scholar

[87] V. Valiunas, R. Weingart, P.R. Brink, Formation of heterotypic gap junction channels by connexins 40 and 43, Circ Res 86 (2000) E42-49.

DOI: 10.1161/01.res.86.2.e42

Google Scholar

[88] G.T. Cottrell, J.M. Burt, Heterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons, Am J Physiol Cell Physiol 281 (2001) C1559-1567.

DOI: 10.1152/ajpcell.2001.281.5.c1559

Google Scholar

[89] G.T. Cottrell, Y. Wu, J.M. Burt, Functional characteristics of heteromeric Cx40-Cx43 gap junction channel formation, Cell Commun Adhes 8 (2001) 193-197.

DOI: 10.3109/15419060109080722

Google Scholar

[90] X. Lin, J. Gemel, A. Glass, C.W. Zemlin, E.C. Beyer, R.D. Veenstra, Connexin40 and connexin43 determine gating properties of atrial gap junction channels, J Mol Cell Cardiol 48 (2010) 238-245.

DOI: 10.1016/j.yjmcc.2009.05.014

Google Scholar

[91] V.L. Linhares, N.A. Almeida, D.C. Menezes, D.A. Elliott, D. Lai, E.C. Beyer, A.C. Campos de Carvalho, M.W. Costa, Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5, Cardiovasc Res 64 (2004) 402-411.

DOI: 10.1016/j.cardiores.2004.09.021

Google Scholar

[92] A. Pizard, P.G. Burgon, D.L. Paul, B.G. Bruneau, C.E. Seidman, J.G. Seidman, Connexin 40, a target of transcription factor Tbx5, patterns wrist, digits, and sternum, Mol Cell Biol 25 (2005) 5073-5083.

DOI: 10.1128/mcb.25.12.5073-5083.2005

Google Scholar

[93] D.E. Arnolds, F. Liu, J.P. Fahrenbach, G.H. Kim, K.J. Schillinger, S. Smemo, E.M. McNally, M.A. Nobrega, V.V. Patel, I.P. Moskowitz, TBX5 drives Scn5a expression to regulate cardiac conduction system function, J Clin Invest 122 (2012) 2509-2518.

DOI: 10.1172/jci62617

Google Scholar

[94] W.M. Hoogaars, A. Tessari, A.F. Moorman, P.A. de Boer, J. Hagoort, A.T. Soufan, M. Campione, V.M. Christoffels, The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart, Cardiovasc Res 62 (2004) 489-499.

DOI: 10.1016/j.cardiores.2004.01.030

Google Scholar

[95] W.T. Aanhaanen, B.J. Boukens, A. Sizarov, V. Wakker, C. de Gier-de Vries, A.C. van Ginneken, A.F. Moorman, R. Coronel, V.M. Christoffels, Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice, J Clin Invest 121 (2011) 534-544.

DOI: 10.1172/jci44350

Google Scholar

[96] N. Belluardo, T.W. White, M. Srinivas, A. Trovato-Salinaro, H. Ripps, G. Mudo, R. Bruzzone, D.F. Condorelli, Identification and functional expression of HCx31.9, a novel gap junction gene, Cell Commun Adhes 8 (2001) 173-178.

DOI: 10.3109/15419060109080719

Google Scholar

[97] M.M. Kreuzberg, G. Sohl, J.S. Kim, V.K. Verselis, K. Willecke, F.F. Bukauskas, Functional properties of mouse connexin30.2 expressed in the conduction system of the heart, Circ Res 96 (2005) 1169-1177.

DOI: 10.1161/01.res.0000169271.33675.05

Google Scholar

[98] J. Gemel, X. Lin, R. Collins, R.D. Veenstra, E.C. Beyer, Cx30.2 can form heteromeric gap junction channels with other cardiac connexins, Biochem Biophys Res Commun 369 (2008) 388-394.

DOI: 10.1016/j.bbrc.2008.02.040

Google Scholar

[99] M.M. Kreuzberg, M. Liebermann, S. Segschneider, R. Dobrowolski, H. Dobrzynski, R. Kaba, G. Rowlinson, E. Dupont, N.J. Severs, K. Willecke, Human connexin31.9, unlike its orthologous protein connexin30.2 in the mouse, is not detectable in the human cardiac conduction system, J Mol Cell Cardiol 46 (2009) 553-559.

DOI: 10.1016/j.yjmcc.2008.12.007

Google Scholar

[100] S.W. Patterson, H. Piper, E.H. Starling, The regulation of the heart beat, J Physiol 48 (1914) 465-513.

DOI: 10.1113/jphysiol.1914.sp001676

Google Scholar

[101] E.H. Starling, M.B. Visscher, The regulation of the energy output of the heart, J Physiol 62 (1927) 243-261.

Google Scholar

[102] M.R. Boyett, S. Inada, S. Yoo, J. Li, J. Liu, J. Tellez, I.D. Greener, H. Honjo, R. Billeter, M. Lei, H. Zhang, I.R. Efimov, H. Dobrzynski, Connexins in the sinoatrial and atrioventricular nodes, Adv Cardiol 42 (2006) 175-197.

DOI: 10.1159/000092569

Google Scholar

[103] T.A. van Veen, H.V. van Rijen, H.J. Jongsma, Physiology of cardiovascular gap junctions, Adv Cardiol 42 (2006) 18-40.

DOI: 10.1159/000092560

Google Scholar

[104] V. Valiunas, D. Manthey, R. Vogel, K. Willecke, R. Weingart, Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells, J Physiol 519 Pt 3 (1999) 631-644.

DOI: 10.1111/j.1469-7793.1999.0631n.x

Google Scholar

[105] D. Gros, M. Theveniau-Ruissy, M. Bernard, T. Calmels, F. Kober, G. Sohl, K. Willecke, J. Nargeot, H.J. Jongsma, M.E. Mangoni, Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate, Cardiovasc Res 85 (2010) 45-55.

DOI: 10.1093/cvr/cvp280

Google Scholar

[106] K.E. Reed, E.M. Westphale, D.M. Larson, H.Z. Wang, R.D. Veenstra, E.C. Beyer, Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein, J Clin Invest 91 (1993) 997-1004.

DOI: 10.1172/jci116321

Google Scholar

[107] J.A. Haefliger, R. Polikar, G. Schnyder, M. Burdet, E. Sutter, T. Pexieder, P. Nicod, P. Meda, Connexin37 in normal and pathological development of mouse heart and great arteries, Dev Dyn 218 (2000) 331-344.

DOI: 10.1002/(sici)1097-0177(200006)218:2<331::aid-dvdy7>3.0.co;2-4

Google Scholar

[108] S.J. Munger, J.D. Kanady, A.M. Simon, Absence of venous valves in mice lacking Connexin37, Dev Biol 373 (2013) 338-348.

DOI: 10.1016/j.ydbio.2012.10.032

Google Scholar

[109] A.M. Simon, A.R. McWhorter, J.A. Dones, C.L. Jackson, H. Chen, Heart and head defects in mice lacking pairs of connexins, Dev Biol 265 (2004) 369-383.

DOI: 10.1016/j.ydbio.2004.04.009

Google Scholar

[110] M.G. Hopperstad, M. Srinivas, D.C. Spray, Properties of gap junction channels formed by Cx46 alone and in combination with Cx50, Biophys J 79 (2000) 1954-1966.

DOI: 10.1016/s0006-3495(00)76444-7

Google Scholar

[111] E. De Vuyst, E. Decrock, M. De Bock, H. Yamasaki, C.C. Naus, W.H. Evans, L. Leybaert, Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor, Mol Biol Cell 18 (2007) 34-46.

DOI: 10.1091/mbc.e06-03-0182

Google Scholar

[112] W.H. Evans, P.E. Martin, Gap junctions: structure and function (Review), Mol Membr Biol 19 (2002) 121-136.

Google Scholar

[113] D.E. Gutstein, G.E. Morley, D. Vaidya, F. Liu, F.L. Chen, H. Stuhlmann, G.I. Fishman, Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction, Circulation 104 (2001) 1194-1199.

DOI: 10.1161/hc3601.093990

Google Scholar

[114] J.C. Herve, N. Bourmeyster, D. Sarrouilhe, H.S. Duffy, Gap junctional complexes: from partners to functions, Prog Biophys Mol Biol 94 (2007) 29-65.

DOI: 10.1016/j.pbiomolbio.2007.03.010

Google Scholar

[115] J.C. Herve, M. Derangeon, B. Bahbouhi, M. Mesnil, D. Sarrouilhe, The connexin turnover, an important modulating factor of the level of cell-to-cell junctional communication: comparison with other integral membrane proteins, J Membr Biol 217 (2007) 21-33.

DOI: 10.1007/s00232-007-9054-8

Google Scholar

[116] S. Kaese, S. Verheule, Cardiac electrophysiology in mice: a matter of size, Front Physiol 3 (2012) 345.

Google Scholar

[117] B.M. Lewis, A. Pexa, K. Francis, V. Verma, A.M. McNicol, M. Scanlon, A. Deussen, W.H. Evans, D.A. Rees, J. Ham, Adenosine stimulates connexin 43 expression and gap junctional communication in pituitary folliculostellate cells, FASEB J 20 (2006) 2585-2587.

DOI: 10.1096/fj.06-6121fje

Google Scholar

[118] M. Oyamada, K. Takebe, Y. Oyamada, Regulation of connexin expression by transcription factors and epigenetic mechanisms, Biochim Biophys Acta 1828 (2013) 118-133.

DOI: 10.1016/j.bbamem.2011.12.031

Google Scholar

[119] V.K. Verselis, M. Srinivas, Connexin channel modulators and their mechanisms of action, Neuropharmacology (2013).

DOI: 10.1016/j.neuropharm.2013.03.020

Google Scholar

[120] M. Srinivas, M.G. Hopperstad, D.C. Spray, Quinine blocks specific gap junction channel subtypes, Proc Natl Acad Sci U S A 98 (2001) 10942-10947.

DOI: 10.1073/pnas.191206198

Google Scholar

[121] H. Musa, E. Fenn, M. Crye, J. Gemel, E.C. Beyer, R.D. Veenstra, Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions, J Physiol 557 (2004) 863-878.

DOI: 10.1113/jphysiol.2003.059386

Google Scholar

[122] G. Dahl, W. Nonner, R. Werner, Attempts to define functional domains of gap junction proteins with synthetic peptides, Biophys J 67 (1994) 1816-1822.

DOI: 10.1016/s0006-3495(94)80663-0

Google Scholar

[123] A. Warner, D.K. Clements, S. Parikh, W.H. Evans, R.L. DeHaan, Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes, J Physiol 488 ( Pt 3) (1995) 721-728.

DOI: 10.1113/jphysiol.1995.sp021003

Google Scholar

[124] V.M. Berthoud, E.C. Beyer, K.H. Seul, Peptide inhibitors of intercellular communication, Am J Physiol Lung Cell Mol Physiol 279 (2000) L619-622.

DOI: 10.1152/ajplung.2000.279.4.l619

Google Scholar

[125] W.H. Evans, G. Bultynck, L. Leybaert, Manipulating connexin communication channels: use of peptidomimetics and the translational outputs, J Membr Biol 245 (2012) 437-449.

DOI: 10.1007/s00232-012-9488-5

Google Scholar

[126] C.S. Wright, M.A. van Steensel, M.B. Hodgins, P.E. Martin, Connexin mimetic peptides improve cell migration rates of human epidermal keratinocytes and dermal fibroblasts in vitro, Wound Repair Regen 17 (2009) 240-249.

DOI: 10.1111/j.1524-475x.2009.00471.x

Google Scholar

[127] T. Desplantez, V. Verma, L. Leybaert, W.H. Evans, R. Weingart, Gap26, a connexin mimetic peptide, inhibits currents carried by connexin43 hemichannels and gap junction channels, Pharmacol Res 65 (2012) 546-552.

DOI: 10.1016/j.phrs.2012.02.002

Google Scholar

[128] N. Wang, M. De Bock, G. Antoons, A.K. Gadicherla, M. Bol, E. Decrock, W.H. Evans, K.R. Sipido, F.F. Bukauskas, L. Leybaert, Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation, Basic Res Cardiol 107 (2012) 304.

DOI: 10.1007/s00395-012-0304-2

Google Scholar

[129] E.H. Chowdhury, T. Akaike, High performance DNA nano-carriers of carbonate apatite: multiple factors in regulation of particle synthesis and transfection efficiency, Int J Nanomedicine 2 (2007) 101-106.

DOI: 10.2147/nano.2007.2.1.101

Google Scholar

[130] H.L. Jiang, Y.K. Kim, R. Arote, J.W. Nah, M.H. Cho, Y.J. Choi, T. Akaike, C.S. Cho, Chitosan-graft-polyethylenimine as a gene carrier, J Control Release 117 (2007) 273-280.

DOI: 10.1016/j.jconrel.2006.10.025

Google Scholar

[131] S.J. Kim, H. Ise, M. Goto, K. Komura, C.S. Cho, T. Akaike, Gene delivery system based on highly specific recognition of surface-vimentin with N-acetylglucosamine immobilized polyethylenimine, Biomaterials 32 (2011) 3471-3480.

DOI: 10.1016/j.biomaterials.2010.12.062

Google Scholar

[132] S. Tada, E.H. Chowdhury, C.S. Cho, T. Akaike, pH-sensitive carbonate apatite as an intracellular protein transporter, Biomaterials 31 (2010) 1453-1459.

DOI: 10.1016/j.biomaterials.2009.10.016

Google Scholar

[133] F.T. Zohra, Y. Maitani, T. Akaike, mRNA delivery through fibronectin associated liposome-apatite particles: a new approach for enhanced mRNA transfection to mammalian cell, Biol Pharm Bull 35 (2012) 111-115.

DOI: 10.1248/bpb.35.111

Google Scholar

[134] D. Xing, A.L. Kjolbye, M.S. Nielsen, J.S. Petersen, K.W. Harlow, N.H. Holstein-Rathlou, J.B. Martins, ZP123 increases gap junctional conductance and prevents reentrant ventricular tachycardia during myocardial ischemia in open chest dogs, J Cardiovasc Electrophysiol 14 (2003) 510-520.

DOI: 10.1046/j.1540-8167.2003.02329.x

Google Scholar

[135] T.C. Clarke, D. Thomas, J.S. Petersen, W.H. Evans, P.E. Martin, The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43, Br J Pharmacol 147 (2006) 486-495.

DOI: 10.1038/sj.bjp.0706631

Google Scholar

[136] J.M. Guerra, T.H.t. Everett, K.W. Lee, E. Wilson, J.E. Olgin, Effects of the gap junction modifier rotigaptide (ZP123) on atrial conduction and vulnerability to atrial fibrillation, Circulation 114 (2006) 110-118.

DOI: 10.1161/circulationaha.105.606251

Google Scholar

[137] J.K. Hennan, R.E. Swillo, G.A. Morgan, E.I. Rossman, J. Kantrowitz, J. Butera, J.S. Petersen, S.J. Gardell, G.P. Vlasuk, GAP-134 ([2S,4R]-1-[2-aminoacetyl]4-benzamidopyrrolidine-2-carboxylic acid) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs, J. Cardiovasc Pharmacol Ther 14 (2009) 207-214.

DOI: 10.1177/1074248409340779

Google Scholar

[138] E.C. Beyer, X. Lin, R.D. Veenstra, Interfering amino terminal peptides and functional implications for heteromeric gap junction formation, Front Pharmacol 4 (2013) 67.

DOI: 10.3389/fphar.2013.00067

Google Scholar

[139] D.O. Taylor, L.B. Edwards, P. Aurora, J.D. Christie, F. Dobbels, R. Kirk, A.O. Rahmel, A.Y. Kucheryavaya, M.I. Hertz, Registry of the International Society for Heart and Lung Transplantation: twenty-fifth official adult heart transplant report--2008, J. Heart Lung Transplant 27 (2008) 943-956.

DOI: 10.1016/j.healun.2008.06.017

Google Scholar

[140] C.V. Alvarez, M. Garcia-Lavandeira, M.E. Garcia-Rendueles, E. Diaz-Rodriguez, A.R. Garcia-Rendueles, S. Perez-Romero, T.V. Vila, J.S. Rodrigues, P.V. Lear, S.B. Bravo, Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells, J. Mol. Endocrinol. 49 (2012) R89-111.

DOI: 10.1530/jme-12-0072

Google Scholar

[141] D.A. Robinton, G.Q. Daley, The promise of induced pluripotent stem cells in research and therapy, Nature 481 (2012) 295-305.

DOI: 10.1038/nature10761

Google Scholar

[142] M. Ieda, Heart regeneration using reprogramming technology, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89 (2013) 118-128.

Google Scholar

[143] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (2006) 663-676.

DOI: 10.1016/j.cell.2006.07.024

Google Scholar

[144] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131 (2007) 861-872.

DOI: 10.1016/j.cell.2007.11.019

Google Scholar

[145] L. Qian, E.C. Berry, J.D. Fu, M. Ieda, D. Srivastava, Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro, Nat. Protoc. 8 (2013) 1204-1215.

DOI: 10.1038/nprot.2013.067

Google Scholar

[146] R. Wada, N. Muraoka, K. Inagawa, H. Yamakawa, K. Miyamoto, T. Sadahiro, T. Umei, R. Kaneda, T. Suzuki, K. Kamiya, S. Tohyama, S. Yuasa, K. Kokaji, R. Aeba, R. Yozu, H. Yamagishi, T. Kitamura, K. Fukuda, M. Ieda, Induction of human cardiomyocyte-like cells from fibroblasts by defined factors, Proc Natl Acad Sci U S A (2013).

DOI: 10.1073/pnas.1304053110

Google Scholar

[147] A. Minato, H. Ise, M. Goto, T. Akaike, Cardiac differentiation of embryonic stem cells by substrate immobilization of insulin-like growth factor binding protein 4 with elastin-like polypeptides, Biomaterials 33 (2012) 515-523.

DOI: 10.1016/j.biomaterials.2011.09.070

Google Scholar

[148] H. Uosaki, H. Fukushima, A. Takeuchi, S. Matsuoka, N. Nakatsuji, S. Yamanaka, J.K. Yamashita, Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression, PLoS One 6 (2011) e23657.

DOI: 10.1371/journal.pone.0023657

Google Scholar

[149] N.C. Dubois, A.M. Craft, P. Sharma, D.A. Elliott, E.G. Stanley, A.G. Elefanty, A. Gramolini, G. Keller, SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells, Nat. Biotechnol. 29 (2011) 1011-1018.

DOI: 10.1038/nbt.2005

Google Scholar

[150] Y. Shiba, S. Fernandes, W.Z. Zhu, D. Filice, V. Muskheli, J. Kim, N.J. Palpant, J. Gantz, K.W. Moyes, H. Reinecke, B. Van Biber, T. Dardas, J.L. Mignone, A. Izawa, R. Hanna, M. Viswanathan, J.D. Gold, M.I. Kotlikoff, N. Sarvazyan, M.W. Kay, C.E. Murry, M.A. Laflamme, Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts, Nature 489 (2012) 322-325.

DOI: 10.1038/nature11317

Google Scholar

[151] E. Kim, G.I. Fishman, Designer gap junctions that prevent cardiac arrhythmias, Trends. Cardiovasc. Med. 23 (2013) 33-38.

DOI: 10.1016/j.tcm.2012.08.008

Google Scholar

[152] E.L. Scheller, L.G. Villa-Diaz, P.H. Krebsbach, Gene therapy: implications for craniofacial regeneration, J. Craniofac. Surg. 23 (2012) 333-337.

DOI: 10.1097/scs.0b013e318241dc11

Google Scholar

[153] N. Tribulova, V. Shneyvays, L.K. Mamedova, S. Moshel, T. Zinman, A. Shainberg, M. Manoach, P. Weismann, S. Kostin, Enhanced connexin-43 and alpha-sarcomeric actin expression in cultured heart myocytes exposed to triiodo-L-thyronine, J. Mol. Histol. 35 (2004) 463-470.

DOI: 10.1023/b:hijo.0000045945.16046.b5

Google Scholar

[154] N.A. Almeida, A. Cordeiro, D.S. Machado, L.L. Souza, T.M. Ortiga-Carvalho, A.C. Campos-de-Carvalho, F.E. Wondisford, C.C. Pazos-Moura, Connexin40 messenger ribonucleic acid is positively regulated by thyroid hormone (TH) acting in cardiac atria via the TH receptor, Endocrinology 150 (2009) 546-554.

DOI: 10.1210/en.2008-0451

Google Scholar

[155] T.M. Yau, C. Kim, G. Li, Y. Zhang, R.D. Weisel, R.K. Li, Maximizing ventricular function with multimodal cell-based gene therapy, Circulation 112 (2005) I123-128.

DOI: 10.1161/circulationaha.104.525147

Google Scholar

[156] J. Yang, W. Zhou, W. Zheng, Y. Ma, L. Lin, T. Tang, J. Liu, J. Yu, X. Zhou, J. Hu, Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction, Cardiology 107 (2007) 17-29.

DOI: 10.1159/000093609

Google Scholar

[157] M. Delmar, F.X. Liang, Connexin43 and the regulation of intercalated disc function, Heart Rhythm 9 (2012) 835-838.

DOI: 10.1016/j.hrthm.2011.10.028

Google Scholar

[158] M. Delmar, N. Makita, Cardiac connexins, mutations and arrhythmias, Curr. Opin. Cardiol. 27 (2012) 236-241.

DOI: 10.1097/hco.0b013e328352220e

Google Scholar

[159] G.L. Firestone, B.J. Kapadia, Minireview: regulation of gap junction dynamics by nuclear hormone receptors and their ligands, Mol. Endocrinol. 26 (2012) 1798-1807.

DOI: 10.1210/me.2012-1065

Google Scholar

[160] K. Inagawa, M. Ieda, Direct reprogramming of mouse fibroblasts into cardiac myocytes, J. Cardiovasc. Transl. Res. 6 (2013) 37-45.

DOI: 10.1007/s12265-012-9412-5

Google Scholar