Non-Destructive Residual Stress Investigations of Natural Polycrystalline Diamonds

Article Preview

Abstract:

Three natural polycrystalline diamond samples have been investigated non-destructively in their raw as-discovered forms. The samples originate from different locations in the world and possibly have different mechanisms of formation. The study reveals that the stones are primarily composed of cubic diamond with varying amounts of impurities that emanate from their excessive porosities and entrapped environmental contamination from the areas they were formed and subsequently discovered. Residual stress analyses with X-ray and neutron diffraction techniques of the diamond phase in the interior regions of the diamonds revealed low stress values.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] E.I. Erlich and W.D. Hausel, Diamond Deposits, Society for Mining, Metallurgy and Exploration, Inc. USA, 2002 ISBN 0-87335-213-0.

Google Scholar

[2] Y.A. Litvin, Russian Geology and Geophysics 50 (2009)1188-1200.

Google Scholar

[3] K. Shibata and H. Kamioka Mineralogical Magazine 57 (1993) 607-611.

Google Scholar

[4] G. Kletetschka, P.T. Taylor and P.J. Wasilewski, H.G.M. Hill, Earth and Planetary Science Letters 181 (2000) 279-290.

DOI: 10.1016/s0012-821x(00)00213-2

Google Scholar

[5] M. Ozima, S. Zashu, K. Tomura and Y. Matsuhisa, Nature 351 (1991) 472-474.

DOI: 10.1038/351472a0

Google Scholar

[6] J.D. Kramers, M.A.G. Andreoli, M. Atanasova, G.A. Belyanin, D.L. Block, C.B. Franklyn,C. Harris, M. Lekgoathi, C.S. Montross T.P. Ntsoane, V. Pischedda, P. Segonyane, K.S. Viljoen and J.E. Westraadt, Earth and Planetary Science Letters 382 (2013).

DOI: 10.1016/j.epsl.2013.09.003

Google Scholar

[7] R. Z. Khaliullin, H. Eshet, T. D. Kühne, J. Behler and M. Parrinello, Nature Materials 10 (2011) 693-697.

DOI: 10.1038/nmat3078

Google Scholar

[8] C. Frondel and U.B. Marvin, Nature 214 (5088) (1967) 587-589. Bibcode: 1967Natur. 214. 587F. doi: 10. 1038/214587a0.

DOI: 10.1038/214587a0

Google Scholar

[9] P. Withers in: M.E. Fitzpatric, A. Lodini (Eds. ), Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation, Taylor and Francis, London, 2003, p.170.

DOI: 10.1201/9780203608999.ch10

Google Scholar

[10] O. Kirstein, U. Garbe and V. Luzin, Mater. Sci. Forum 652 (2010) 86.

Google Scholar

[11] A. Steuwer, J. R. Santisteban, M. Turski, P. J. Withers and T. Buslaps, J. Appl. Cryst. 37 (2004) 883-889.

DOI: 10.1107/s0021889804023349

Google Scholar

[12] V.A. Petrovsky, A.A. Shiryaev, V.P. Lyutoev, A.E. Sukharev and M. Martins, Eur. J. Mineral. 22 (2010) 35-47.

Google Scholar

[13] D. Howell, S. Piazolo, D.P. Dobson, I.G. Wood, A.P. Jones, N. Walte, D.J. Frost, D. Fisher, and W.L. Griffin, Diamond Relat. Mater. 30 (2012) 20-30.

DOI: 10.1016/j.diamond.2012.09.003

Google Scholar

[14] S. Han and J. Ihm, Physical Review Letters 80(5) (1998) 995-998.

Google Scholar

[15] H. Kagi and S. Fakura, Eur. J. Mineral. 20 (2008) 387-393.

Google Scholar