Microstructure Transition during Rapid Solidification of Liquid Metal Zn

Article Preview

Abstract:

A molecular dynamics simulation study has been performed for a system consisting of 10,000 atoms to investigate the microstructure evolutions during the rapid solidification. Results indicate that the crystallization has not enough time to complete due to the high cooling rate; therefore, a part of crystal structure is formed, in which the hcp and fcc basic clusters and some other metallic type clusters coexist in the final solidified structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

574-577

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Q. Cheng, E. Ma. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science. 56 (2011) 379-473.

DOI: 10.1016/j.pmatsci.2010.12.002

Google Scholar

[2] H. Z. Fang, X. Hui, G. L. Chen, et al. Structural evolution of Cu during rapid quenching by ab initio molecular dynamics. Phys. Lett. A. 372 (2008) 5831-5837.

DOI: 10.1016/j.physleta.2008.07.022

Google Scholar

[3] L. L. Zhou, R. S. Liu, Z. A. Tian. Simulation of formation and evolution of nano-clusters during rapid solidification of liquid Ca70Mg30 alloy. Trans. Nonferrous Met. Soc. China. 23 (2013) 2354-2360.

DOI: 10.1016/s1003-6326(13)62741-7

Google Scholar

[4] Logan Ward, Dan Miracle, Wolfgang Windl, et al. Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations. Phys. Rev. B. 88 (2013) 134205-134210.

DOI: 10.1103/physrevb.88.134205

Google Scholar

[5] Y. Lin, R. S. Liu, Z. A. Tian, et al. Effect of cooling rates on microstructures during solidification process of liquid metal Zn. Acta Phys. -Chim. Sin. 24 (2008) 250-256.

Google Scholar

[6] Z. A. Tian, R. S. Liu, C. X. Zheng, et al. Formation and Evolution of Metastable bcc Phase during Solidification of Liquid Ag: A Molecular Dynamics Simulation Study. J. Chem. Phys. A. 112 (2008) 12326-12336.

DOI: 10.1021/jp804836b

Google Scholar

[7] Z. A. Tian, R. S. Liu, P. Peng, et al. Freezing structures of free silver nanodroplets: A molecular dynamics simulation study. Phys. Lett. A. 373 (2009) 1667-1671.

DOI: 10.1016/j.physleta.2009.02.041

Google Scholar

[8] S. Wang, S. K. Lai. Structure and electrical resistivities of liquid binary alloys. J. Phys. F: Metal. Phys. 10 (1980) 2717-2737.

DOI: 10.1088/0305-4608/10/12/012

Google Scholar

[9] D. H. Li, X. R. Li, S. Wang. Variational calculation of Helmholtz free energies with applications to the sp-type liquid metals. J. Phys. F: Metal. Phys. 16 (1986) 309-321.

DOI: 10.1088/0305-4608/16/3/010

Google Scholar

[10] S. K. Lai, W. Li, M. P. Tosi. Evaluation of liquid structure for potassium, zinc, and cadmium. Phys. Rev. A. 42 (1990) 7289-7302.

DOI: 10.1103/physreva.42.7289

Google Scholar

[11] The structure of Non-Crystalline materials; Y. Waseda, Ed.; New York: McGraw-Hill, (1980).

Google Scholar

[12] D. W. Qi, S. Wang. Icosahedral order and defects in metallic liquids and glasses. Phys. Rev. B. 44 (1991) 884-887.

DOI: 10.1103/physrevb.44.884

Google Scholar

[13] J. D. Honeycutt, H. C. Anderson. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91 (1987) 4950-4963.

DOI: 10.1021/j100303a014

Google Scholar