DSC Study of Recrystallization in Wiredrawn Industrial Copper

Article Preview

Abstract:

The goal of this work is to investigate the recrystallization reaction in cold wiredrawn industrial copper. We have used a differential scanning calorimetry and X-ray Diffraction techniques. The stored and apparent activation energies have been determined by differential scanning calorimetry under isochronal conditions. The differential scanning calorimetry results have been analyzed using models developed by Kissinger, Ozawa, Boswell, and Starink. In addition, the transformed fraction, as a function of temperature, and some kinetic parameters have been determined. We have found that cold wiredrawn affects some microstructure proprieties of the material, such the increase of stored and apparent activation energies, and dislocation density after deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

646-650

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Vandermeer, The recrystallization characteristics of moderately deformed aluminum, Metallurgical Transactions, 1 (1970) 819-826.

DOI: 10.1007/bf02811760

Google Scholar

[2] S. Chen, D. Hanlon, S. Van Der Zwaag, Y. Pei, J.T.M. Dehosson, Quantification of the recrystallization behaviour in Al-alloy AA1050, J. Mater. Sci., 37 (2002) 989-995.

DOI: 10.1023/a:1014356116058

Google Scholar

[3] Tarasiuk, P. Gerber, B. Bacroix, Estimation of recrystallized volume fraction from EBSD data, Acta Materialia, 50 (2002) 1467-1477.

DOI: 10.1016/s1359-6454(02)00005-8

Google Scholar

[4] MAUD, Material Analysis Using Diffraction on http: /www. ing. unitn. it.

Google Scholar

[5] L. Lutterotti, MAUD, in: CPD NEWSLETTER, (IUCr), (2000).

Google Scholar

[6] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Seconded., Elsevier Pergamon Press, Oxford, (2004).

Google Scholar

[7] S. Jakani, Effet des impuretés sur les mécanismes de recristallisation du cuivre tréfilé, Ph. D thesis, Université de Paris XI, Orsay, France, (2004).

Google Scholar

[8] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, 29(1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[9] P.G. Boswell, On the calculation of activation energies using a modified Kissinger method, Journal of Thermal Analysis, 18 (1980) 353- 358.

DOI: 10.1007/bf02055820

Google Scholar

[10] T. Ozawa, Estimation of activation energy by isoconversion methods, Thermochimica Acta, 203 (1992) 159-165.

DOI: 10.1016/0040-6031(92)85192-x

Google Scholar

[11] M. Starink, Analysis of aluminum based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics, International Materials Reviews, 49 (2004) 191-226.

DOI: 10.1179/095066004225010532

Google Scholar

[12] E.J. Mittemeijer, Analysis of the kinetics of phase transformations, J. Mater. Sci., 27 (1992) 3977-3987.

Google Scholar

[13] K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials, J. Mater. Sci., 19 (1984) 291-296.

DOI: 10.1007/bf02403137

Google Scholar

[14] N. Hua, W. Chen, X. Liu, F. Yue, Isochronal and isothermal crystallization kinetics of Zr–Al–Fe glassy alloys: Effect of high–Zr content, Journal of Non-Crystalline Solids, 388 (2014) 10-16.

DOI: 10.1016/j.jnoncrysol.2014.01.013

Google Scholar