A Subdividing of Local Fractional Integral Holder’s Inequality on Fractal Space

Article Preview

Abstract:

In this paper, we establish a subdividing of Hölder’s inequality via local fractional integral. Its reverse version is also given.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

976-979

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Hardy, J.E. Littlewood, G. Pólya: Inequalities, second ed., Cambridge University Press, UK, (1952).

Google Scholar

[2] E.F. Beckenbach, R. Bellman: Inequalities, Springer-Verlag, Berlin, (1961).

Google Scholar

[3] X.J. Yang: Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, (2011).

Google Scholar

[4] G.S. Chen: Journal of Function Spaces and Applications, Vol. 2013, Article ID 198405, 9, p. (2013).

Google Scholar

[5] C.J. Zhao, W.S. Cheung: Journal of Mathematical sciences (FJMS), Vol. 60 (2012) No. 1, pp.101-108.

Google Scholar

[6] K.M. Kolwankar, and A.D. Gangal: Chaos, Vol. 6 (1996) No. 4, p.505–513.

Google Scholar

[7] A. Carpinteri , B. Chiaia, P. Cornetti: Engineering Fracture Mechanics, Vol. 70 (2003) p.2321–2349.

DOI: 10.1016/s0013-7944(02)00220-5

Google Scholar

[8] A. Babakhan, V.D. Gejji: On calculus of local fractional derivatives, J. Math, Anal, Appl, Vol. 270 (2002), p.66–79.

Google Scholar

[9] G.S. Chen: Intelligent Transport, Systems, Vol. 1 (2012) No. 1, pp.29-31.

Google Scholar

[10] G.S. Chen: Local fractional improper integral in fractal space, Adv. Inform, Tech, Manage, Vol. 1 (2012) No. 1, pp.4-8.

Google Scholar

[11] G.S. Chen: Mean value theorems for local fractional integrals on fractal space, Adv. Mech. Engrg, Appl. Vol. 1 (2012) No. 1, pp.5-8.

Google Scholar

[12] G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput, Sci. Engrg, Vol. 6 (2013), pp.363-365.

Google Scholar

[13] G.S. Chen: The local fractional Hilbert transform in fractal space, J, Appl. Sci. Engrg, Innov, Vol. 1 (2014), pp.21-27.

Google Scholar