[1]
G. Hardy, J.E. Littlewood, G. Pólya: Inequalities, second ed., Cambridge University Press, UK, (1952).
Google Scholar
[2]
E.F. Beckenbach, R. Bellman: Inequalities, Springer-Verlag, Berlin, (1961).
Google Scholar
[3]
X.J. Yang: Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, (2011).
Google Scholar
[4]
G.S. Chen: Journal of Function Spaces and Applications, Vol. 2013, Article ID 198405, 9, p. (2013).
Google Scholar
[5]
C.J. Zhao, W.S. Cheung: Journal of Mathematical sciences (FJMS), Vol. 60 (2012) No. 1, pp.101-108.
Google Scholar
[6]
K.M. Kolwankar, and A.D. Gangal: Chaos, Vol. 6 (1996) No. 4, p.505–513.
Google Scholar
[7]
A. Carpinteri , B. Chiaia, P. Cornetti: Engineering Fracture Mechanics, Vol. 70 (2003) p.2321–2349.
DOI: 10.1016/s0013-7944(02)00220-5
Google Scholar
[8]
A. Babakhan, V.D. Gejji: On calculus of local fractional derivatives, J. Math, Anal, Appl, Vol. 270 (2002), p.66–79.
Google Scholar
[9]
G.S. Chen: Intelligent Transport, Systems, Vol. 1 (2012) No. 1, pp.29-31.
Google Scholar
[10]
G.S. Chen: Local fractional improper integral in fractal space, Adv. Inform, Tech, Manage, Vol. 1 (2012) No. 1, pp.4-8.
Google Scholar
[11]
G.S. Chen: Mean value theorems for local fractional integrals on fractal space, Adv. Mech. Engrg, Appl. Vol. 1 (2012) No. 1, pp.5-8.
Google Scholar
[12]
G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput, Sci. Engrg, Vol. 6 (2013), pp.363-365.
Google Scholar
[13]
G.S. Chen: The local fractional Hilbert transform in fractal space, J, Appl. Sci. Engrg, Innov, Vol. 1 (2014), pp.21-27.
Google Scholar