An Improvement of Local Fractional Integral Minkowski’s Inequality on Fractal Space

Article Preview

Abstract:

In the paper, we establish some improvements of Minkowski’s inequality on fractal space via the local fractional integral.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

980-983

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Kolwankar, and A.D. Gangal: Chaos, Vol. 6 (1996) No. 4, p.505–513.

Google Scholar

[2] A. Carpinteri, P. Cornetti: Chaos, Solitons and Fractals, Vol. 13 (2002), p.85–94.

Google Scholar

[3] A. Carpinteri, B. Chiaia, P. Cornetti: Engineering Fracture Mechanics, Vol. 70 (2003), p.2321–2349.

DOI: 10.1016/s0013-7944(02)00220-5

Google Scholar

[4] A. Babakhan, V.D. Gejji: On calculus of local fractional derivatives, J. Math, Anal, Appl, Vol. 270 (2002), p.66–79.

Google Scholar

[5] F.B. Adda, J. Cresson, About non-differentiable functions, J. Math, Anal. Appl., Vol. 263 (2001), pp.721-737.

DOI: 10.1016/j.jmaa.2013.06.027

Google Scholar

[6] F.B. Adda, J. Cresson: Applied Mathematics and Computation, Vol. 161 (2005), p.323–345.

Google Scholar

[7] G.S. Chen, The local fractional Stieltjes Transform in fractal space, Adv. Intelligent Transport, Systems Vol. 1 (2012) No. 1, pp.29-31.

Google Scholar

[8] G.S. Chen: Local fractional improper integral in fractal space, Adv. Inform, Tech. Manage, Vol. 1 (2012) No. 1, pp.4-8.

Google Scholar

[9] G. -S. Chen: Mean value theorems for local fractional integrals on fractal space, Adv. Mech, Engrg. Appl, Vol. 1 (2012) No. 1, pp.5-8.

Google Scholar

[10] F. Gao, X. Yang, Z. Kang: Local fractional Newton's method derived from modified local fractional calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization (CSO 2009), 228–232, IEEE Computer Society, (2009).

DOI: 10.1109/cso.2009.330

Google Scholar

[11] G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput. Sci. Engrg, Vol. 6 (2013), pp.363-365.

Google Scholar

[12] G.S. Chen: The local fractional Hilbert transform in fractal space, J. Appl. Sci. Engrg. Innov. 1 (2014), 21-27.

Google Scholar

[13] X.J. Yang: Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, (2011).

Google Scholar

[14] X.J. Yang, Local fractional integral transforms, Progr. Nonlinear Sci. 4 (2011), 1-225.

Google Scholar

[15] X.J. Yang: Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, (2012).

Google Scholar

[16] G.S. Chen: Generalizations of Hölder's and some related integral inequalities on fractal space , Journal of Function Spaces and Applications, Volume 2013, Article ID 198405, 9 pages, (2013).

DOI: 10.1155/2013/198405

Google Scholar

[17] J. C Kuang: Applied Inequalities. Shandong Science and Technology Press, Jinan, 4 (2010).

Google Scholar

[18] C. -J. Zhao, W.S. Cheung: On Minkowski's inequality and its application. J. Inequal. Appl. 2011, 71 (2011).

Google Scholar