[1]
K.M. Kolwankar, and A.D. Gangal: Chaos, Vol. 6 (1996) No. 4, p.505–513.
Google Scholar
[2]
A. Carpinteri, P. Cornetti: Chaos, Solitons and Fractals, Vol. 13 (2002), p.85–94.
Google Scholar
[3]
A. Carpinteri, B. Chiaia, P. Cornetti: Engineering Fracture Mechanics, Vol. 70 (2003), p.2321–2349.
DOI: 10.1016/s0013-7944(02)00220-5
Google Scholar
[4]
A. Babakhan, V.D. Gejji: On calculus of local fractional derivatives, J. Math, Anal, Appl, Vol. 270 (2002), p.66–79.
Google Scholar
[5]
F.B. Adda, J. Cresson, About non-differentiable functions, J. Math, Anal. Appl., Vol. 263 (2001), pp.721-737.
DOI: 10.1016/j.jmaa.2013.06.027
Google Scholar
[6]
F.B. Adda, J. Cresson: Applied Mathematics and Computation, Vol. 161 (2005), p.323–345.
Google Scholar
[7]
G.S. Chen, The local fractional Stieltjes Transform in fractal space, Adv. Intelligent Transport, Systems Vol. 1 (2012) No. 1, pp.29-31.
Google Scholar
[8]
G.S. Chen: Local fractional improper integral in fractal space, Adv. Inform, Tech. Manage, Vol. 1 (2012) No. 1, pp.4-8.
Google Scholar
[9]
G. -S. Chen: Mean value theorems for local fractional integrals on fractal space, Adv. Mech, Engrg. Appl, Vol. 1 (2012) No. 1, pp.5-8.
Google Scholar
[10]
F. Gao, X. Yang, Z. Kang: Local fractional Newton's method derived from modified local fractional calculus. In: Proc. of the second Scientific and Engineering Computing Symposium on Computational Sciences and Optimization (CSO 2009), 228–232, IEEE Computer Society, (2009).
DOI: 10.1109/cso.2009.330
Google Scholar
[11]
G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput. Sci. Engrg, Vol. 6 (2013), pp.363-365.
Google Scholar
[12]
G.S. Chen: The local fractional Hilbert transform in fractal space, J. Appl. Sci. Engrg. Innov. 1 (2014), 21-27.
Google Scholar
[13]
X.J. Yang: Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, Hong Kong, (2011).
Google Scholar
[14]
X.J. Yang, Local fractional integral transforms, Progr. Nonlinear Sci. 4 (2011), 1-225.
Google Scholar
[15]
X.J. Yang: Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, (2012).
Google Scholar
[16]
G.S. Chen: Generalizations of Hölder's and some related integral inequalities on fractal space , Journal of Function Spaces and Applications, Volume 2013, Article ID 198405, 9 pages, (2013).
DOI: 10.1155/2013/198405
Google Scholar
[17]
J. C Kuang: Applied Inequalities. Shandong Science and Technology Press, Jinan, 4 (2010).
Google Scholar
[18]
C. -J. Zhao, W.S. Cheung: On Minkowski's inequality and its application. J. Inequal. Appl. 2011, 71 (2011).
Google Scholar