On Subdividing of Hölder’s Inequality for Sums

Article Preview

Abstract:

In the paper, we establish some improvements of Hölder’s inequality for sums.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

988-991

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Hardy, J.E. Littlewood, G. Pólya: Inequalities, second ed., Cambridge University Press, UK, (1952).

Google Scholar

[2] E.F. Beckenbach, R. Bellman: Inequalities, Springer-Verlag, Berlin, (1961).

Google Scholar

[3] D.S. Mitrinović, P.M. Vasić: Analytic Inequalities, Springer-Verlag, New York, (1970).

Google Scholar

[4] S. Abramovich, B. Mond, J.E. Pečarić, Sharpening Hölder's inequality, J. Math, Anal, Appl. 196 (1995), p.1131–1134.

DOI: 10.1006/jmaa.1995.1465

Google Scholar

[5] X. Yang: Refinement of Hölder inequality and application to Ostrowski inequality, Appl. Math. Comput. Vol. 138 (2003), p.455–461.

DOI: 10.1016/s0096-3003(02)00159-5

Google Scholar

[6] X. Yang, Hölder's inequality, Appl. Math. Lett. Vol. 16 (2003), p.897–903.

Google Scholar

[7] W.S. He: Generalization of a sharp Hölder's inequality and its application, J. Math, Anal, Appl. Vol. 332 (2007), p.741–750.

Google Scholar

[8] E.G. Kwon, E.K. Bae: On a continuous form of Hölder inequality, J. Math, Anal, Appl. Vol. 343 (2008), p.585–592.

Google Scholar

[9] M. Masjed-Jamei: A functional generalization of the Cauchy–Schwarz inequality and some subclasses, Appl. Math, Lett, Vol. 22 (2009), p.1335–1339.

DOI: 10.1016/j.aml.2009.03.001

Google Scholar

[10] W. Yang, A functional generalization of diamond-α integral Hölder's inequality on time scales, Appl. Math, Lett, Vol. 23 (2010), p.1208–1212.

Google Scholar

[11] D.K. Callebaut: Generalization of the Cauchy–Schwartz inequality, J. Math, Anal, Appl. Vol. 12 (1965), p.491–494.

Google Scholar

[12] H. Qiang, Z. Hu: Generalizations of Hölder's and some related inequalities. Computers and Mathematics with Applications, Vol 61 (2011), p.392–396.

DOI: 10.1016/j.camwa.2010.11.015

Google Scholar

[13] G.S. Chen: Journal of Function Spaces and Applications, Vol. 2013, Article ID 198405, 9, p. (2013).

Google Scholar

[14] W.S. Cheung: Genegralizations of Hölder's inequality, IJMMS, Vol. 26 (2001) No. 1, p.7–10.

Google Scholar

[15] C. J Zhao, W.S. Cheung: Journal of Mathematical sciences (FJMS), Vol. 60 (2012) No. 1, pp.101-108.

Google Scholar

[16] J. Kuang: Applied Inequalities, Shandong Science Press, Jinan, (2003).

Google Scholar

[17] G.S. Chen, The local fractional Stieltjes Transform in fractal space, Adv. Intelligent Transport, Systems, Vol. 1 (2012) No. 1, pp.29-31.

Google Scholar

[18] G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput, Sci. Engrg, Vol. 6 (2013), pp.363-365.

Google Scholar

[19] G.S. Chen: The local fractional Hilbert transform in fractal space, J. Appl. Sci. Engrg. Innov, Vol. 1 (2014), pp.21-27.

Google Scholar