[1]
G. Hardy, J.E. Littlewood, G. Pólya: Inequalities, second ed., Cambridge University Press, UK, (1952).
Google Scholar
[2]
E.F. Beckenbach, R. Bellman: Inequalities, Springer-Verlag, Berlin, (1961).
Google Scholar
[3]
D.S. Mitrinović, P.M. Vasić: Analytic Inequalities, Springer-Verlag, New York, (1970).
Google Scholar
[4]
S. Abramovich, B. Mond, J.E. Pečarić, Sharpening Hölder's inequality, J. Math, Anal, Appl. 196 (1995), p.1131–1134.
DOI: 10.1006/jmaa.1995.1465
Google Scholar
[5]
X. Yang: Refinement of Hölder inequality and application to Ostrowski inequality, Appl. Math. Comput. Vol. 138 (2003), p.455–461.
DOI: 10.1016/s0096-3003(02)00159-5
Google Scholar
[6]
X. Yang, Hölder's inequality, Appl. Math. Lett. Vol. 16 (2003), p.897–903.
Google Scholar
[7]
W.S. He: Generalization of a sharp Hölder's inequality and its application, J. Math, Anal, Appl. Vol. 332 (2007), p.741–750.
Google Scholar
[8]
E.G. Kwon, E.K. Bae: On a continuous form of Hölder inequality, J. Math, Anal, Appl. Vol. 343 (2008), p.585–592.
Google Scholar
[9]
M. Masjed-Jamei: A functional generalization of the Cauchy–Schwarz inequality and some subclasses, Appl. Math, Lett, Vol. 22 (2009), p.1335–1339.
DOI: 10.1016/j.aml.2009.03.001
Google Scholar
[10]
W. Yang, A functional generalization of diamond-α integral Hölder's inequality on time scales, Appl. Math, Lett, Vol. 23 (2010), p.1208–1212.
Google Scholar
[11]
D.K. Callebaut: Generalization of the Cauchy–Schwartz inequality, J. Math, Anal, Appl. Vol. 12 (1965), p.491–494.
Google Scholar
[12]
H. Qiang, Z. Hu: Generalizations of Hölder's and some related inequalities. Computers and Mathematics with Applications, Vol 61 (2011), p.392–396.
DOI: 10.1016/j.camwa.2010.11.015
Google Scholar
[13]
G.S. Chen: Journal of Function Spaces and Applications, Vol. 2013, Article ID 198405, 9, p. (2013).
Google Scholar
[14]
W.S. Cheung: Genegralizations of Hölder's inequality, IJMMS, Vol. 26 (2001) No. 1, p.7–10.
Google Scholar
[15]
C. J Zhao, W.S. Cheung: Journal of Mathematical sciences (FJMS), Vol. 60 (2012) No. 1, pp.101-108.
Google Scholar
[16]
J. Kuang: Applied Inequalities, Shandong Science Press, Jinan, (2003).
Google Scholar
[17]
G.S. Chen, The local fractional Stieltjes Transform in fractal space, Adv. Intelligent Transport, Systems, Vol. 1 (2012) No. 1, pp.29-31.
Google Scholar
[18]
G.S. Chen: The finite Yang-Laplace Transform in fractal space, J. Comput, Sci. Engrg, Vol. 6 (2013), pp.363-365.
Google Scholar
[19]
G.S. Chen: The local fractional Hilbert transform in fractal space, J. Appl. Sci. Engrg. Innov, Vol. 1 (2014), pp.21-27.
Google Scholar