A Proposed User Interface Design as a Stimulus for Personality Types Confirmation

Article Preview

Abstract:

Determining the stimulus is the first step in experimental research to classify personality types based on electroencephalography (EEG), which is stimulated by a visual form known as visual evoked potential (VEP). Matching the personality type of workers to work activities is an organizational concern. The organization demands the concentration of workers to achieve work standards. Information system user interface is a visual form commonly seen by individuals working to carry out job descriptions. Interviews and observations were carried out on several workers as participants. The user interface design of the information systems used by them is the focus of this exploration stage. All participants involved are at the operational level. Their work activities are closely related to the processing of corporate data transactions. Activities of viewing, searching, entering, editing, and deleting data are their daily activities. Of these various activities, all agreed that the data entry process was an activity that required the highest concentration because the validity of the data was essential. Several data entry form designs come in a variety of forms. They were observed to see similarities to one another. The proposed stimulus is the general form of the overall observed data entry form design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-152

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. N. Q. Tram, C. G. T. Tai, and D. T. B. Thuy, User interface design pattern Management System Support for Building Information System,, 2006 1st Int. Conf. Digit. Inf. Manag., p.96–101, 2007,.

DOI: 10.1109/icdim.2007.369336

Google Scholar

[2] M. D. Lytras, F. Garcia-Peñalvo, and P. Ordóñez De Pablos, Advanced human-computer interaction,, Computers in Human Behavior, vol. 29, no. 2, p.305–306, (2013).

DOI: 10.1016/j.chb.2012.11.018

Google Scholar

[3] R. Miñón, L. Moreno, P. Martínez, and J. Abascal, An approach to the integration of accessibility requirements into a user interface development method,, Sci. Comput. Program., vol. 86, p.58–73, 2014,.

DOI: 10.1016/j.scico.2013.04.005

Google Scholar

[4] Å. Granlund, D. Lafrenière, and D. A. Carr, A Pattern-Supported Approach to the User Interface Design Process,, Proc. HCI Int. 2001 9th Int. Conf. Human-Computer Interact., vol. 9, p.1–5, 2001, [Online]. Available: http://www.sm.luth.se/csee/csn/publications/ HCIInt2001Final.pdf.

Google Scholar

[5] J. O. Borchers, A pattern approach to interaction design,, AI Soc., vol. 15, no. 4, p.359–376, 2001,.

Google Scholar

[6] N. Capuano, G. D'Aniello, A. Gaeta, and S. Miranda, A personality based adaptive approach for information systems,, Comput. Human Behav., vol. 44, p.156–165, 2015,.

DOI: 10.1016/j.chb.2014.10.058

Google Scholar

[7] R. Yan, Icon design study in computer interface,, in Procedia Engineering, 2011, vol. 15, p.3134–3138,.

DOI: 10.1016/j.proeng.2011.08.588

Google Scholar

[8] N. Hollender, C. Hofmann, M. Deneke, and B. Schmitz, Integrating cognitive load theory and concepts of human-computer interaction,, Comput. Human Behav., vol. 26, no. 6, p.1278–1288, 2010,.

DOI: 10.1016/j.chb.2010.05.031

Google Scholar

[9] A. González-Torres, F. J. García-Peñalvo, and R. Therón, Human–computer interaction in evolutionary visual software analytics,, Comput. Human Behav., vol. 29, no. 2, p.486–495, Mar. 2013,.

DOI: 10.1016/j.chb.2012.01.013

Google Scholar

[10] O. A. Alsos, A. Das, and D. Svanæs, Mobile health IT: The effect of user interface and form factor on doctor-patient communication,, Int. J. Med. Inform., vol. 81, no. 1, p.12–28, 2012,.

DOI: 10.1016/j.ijmedinf.2011.09.004

Google Scholar

[11] J. Kim, A. Lee, and H. Ryu, Personality and its effects on learning performance: Design guidelines for an adaptive e-learning system based on a user model,, Int. J. Ind. Ergon., vol. 43, no. 5, p.450–461, 2013,.

DOI: 10.1016/j.ergon.2013.03.001

Google Scholar

[12] S. V Pantazi, A. Kushniruk, and J. R. Moehr, The usability axiom of medical information systems,, Int. J. Med. Inform., vol. 75, no. 12, p.829–839, 2006,.

DOI: 10.1016/j.ijmedinf.2006.05.039

Google Scholar

[13] K. Sousa, H. Mendonça, and J. Vanderdonckt, User Interface Development Life Cycle for Business-Driven Enterprise Applications,, 2009, p.23–34.

DOI: 10.1007/978-1-84882-206-1_3

Google Scholar

[14] R. Mahanti, The Application of Quality Function Deployment to User Interface Design,, Qual. Manag. J., vol. 16, no. 1, p.29, (2009).

Google Scholar

[15] Y. Lee, Y. H. Chao, and S. Lin, Structural approach to design user interface,, Comput. Ind., vol. 61, no. 7, p.613–623, 2010,.

Google Scholar

[16] A. Seffah and M. Taleb, Tracing the evolution of HCI patterns as an interaction design tool,, Innov. Syst. Softw. Eng., vol. 8, no. 2, p.93–109, 2012,.

DOI: 10.1007/s11334-011-0178-8

Google Scholar

[17] J. W. Bang, E. C. Lee, and K. R. Park, New computer interface combining gaze tracking and brainwave measurements,, IEEE Trans. Consum. Electron., vol. 57, no. 4, p.1646–1651, 2011,.

DOI: 10.1109/tce.2011.6131137

Google Scholar

[18] C. Zickler, S. Halder, S. C. Kleih, C. Herbert, and A. Kübler, Brain painting: Usability testing according to the user-centered design in end users with severe motor paralysis,, Artif. Intell. Med., vol. 59, no. 2, p.99–110, 2013,.

DOI: 10.1016/j.artmed.2013.08.003

Google Scholar

[19] E. M. Holz, J. Höhne, P. Staiger-Sälzer, M. Tangermann, and A. Kübler, Brain-computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users,, Artif. Intell. Med., vol. 59, no. 2, p.111–120, 2013,.

DOI: 10.1016/j.artmed.2013.08.001

Google Scholar

[20] C. Ziemkiewicz et al., How visualization layout relates to locus of control and other personality factors,, IEEE Trans. Vis. Comput. Graph., vol. 19, no. 7, p.1109–1121, 2013,.

DOI: 10.1109/tvcg.2012.180

Google Scholar

[21] S. N. Abbas, M. Abo-Zahhad, and S. M. Ahmed, State-of-the-art methods and future perspectives for personal recognition based on electroencephalogram signals,, IET Biometrics, vol. 4, no. 3, p.179–190, 2015,.

DOI: 10.1049/iet-bmt.2014.0040

Google Scholar

[22] K. Das, S. Z. S. Zhang, B. Giesbrecht, and M. P. P. M. P. Eckstein, Using rapid visually evoked EEG activity for person identification,, Conf Proc IEEE Eng Med Biol Soc, vol. 2009, p.2490–2493, 2009,.

DOI: 10.1109/iembs.2009.5334858

Google Scholar

[23] C. N. Gupta, R. Palaniappan, and R. Paramesran, Exploiting the P300 paradigm for cognitive biometrics,, Int. J. Cogn. Biometrics, vol. 1, no. 1, p.26, 2012,.

DOI: 10.1504/ijcb.2012.046513

Google Scholar

[24] R. Palaniappan, Method of identifying individuals using VEP signals and neural network,, IEE Proc.-Sci. Meas. Technol, vol. 151, no. 5, p.16–20, 2004,.

DOI: 10.1049/ip-smt:20040003

Google Scholar

[25] H. Touyama, EEG-Based Personal Identification,, Intech, (2009).

Google Scholar

[26] S. K. Yeom, H. Il Suk, and S. W. Lee, Person authentication from neural activity of face-specific visual self-representation,, Pattern Recognit., vol. 46, no. 4, p.1159–1169, 2013,.

DOI: 10.1016/j.patcog.2012.10.023

Google Scholar

[27] B. C. Armstrong, M. V. Ruiz-Blondet, N. Khalifian, K. J. Kurtz, Z. Jin, and S. Laszlo, Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics,, Neurocomputing, vol. 166, p.59–67, 2014,.

DOI: 10.1016/j.neucom.2015.04.025

Google Scholar

[28] R. Das, E. Maiorana, and P. Campisi, EEG Biometrics Using Visual Stimuli: A Longitudinal Study,, IEEE Signal Process. Lett., vol. 23, no. 3, p.341–345, 2016,.

DOI: 10.1109/lsp.2016.2516043

Google Scholar

[29] R. Das, E. Piciucco, E. Maiorana, and P. Campisi, Visually Evoked Potentials for EEG Biometric Recognition,, (2016).

DOI: 10.1109/splim.2016.7528407

Google Scholar

[30] I. Perdana, P. Insap, N. Akhmad, and S. Wimbarti, Confirmation of Personality Types Using Visual Evoked Potential with User Interface Design Stimulus – A Research Plan,, Turkish Online J. Qual. Inq., vol. 12, no. 9, p.4130–4138, 2021, [Online]. Available: https://www.tojqi.net/index.php/journal/article/view/6428.

DOI: 10.3844/jcssp.2021.1138.1146

Google Scholar