Color Difference Evaluation in Photopic, Mesopic and Scotopic Vision

Article Preview

Abstract:

The human visual system is able to adapt to a wide range of the adaptive luminance levels. However, the chroma was found to be the most affected attribute in the assessments. Several color appearance models have been proposed to describe adaptation mechanisms and predict the color appearance at different luminance levels. A set of 72 color pairs of samples that surround four color centers with high chroma was prepared to the test the prediction performance of the CAMs. The visual assessment of these color pairs was performed at eight luminance levels including photopic, mesopic and scotopic luminance levels. The data from visual assessment were used to the test prediction performance of six color difference formula and color appearance models, namely CIELAB, CIECAM02, CAM02-UCS, CAM16, CAM16-UCS and CAM16-UCS with power function.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-110

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W.G. Hunt, M.R. Pointer, Measuring colour, fourth ed., Wiley, Chichester, (2011).

Google Scholar

[2] W.J. Benjamin, Borish's Clinical Refraction, second ed., Butterworth-Heinemann/Elsevier, St. Louis, (2006).

Google Scholar

[3] A. Stockman, L.T. Sharpe, C. Fach, The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches, Vision Research 39(17) (1999) 2901-2927.

DOI: 10.1016/s0042-6989(98)00225-9

Google Scholar

[4] A. Stockman, L.T. Sharpe, The spectral sensitivities of the human middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype, Vision Research 40(13) (2000) 1711-1737.

DOI: 10.1016/s0042-6989(00)00021-3

Google Scholar

[5] M. Vik, M. Viková, M. Pechová, Color discrimination on the border of photopic/mesopic vision, in: FEKT VUT, Proceedings of the 21st International Conference LIGHT SVĚTLO 2015, FEKT VUT, Brno, 2015, pp.97-100.

DOI: 10.13164/conf.light.2015.97

Google Scholar

[6] M. Pechová, M. Kašparová, M. Vik M. Viková, J. Štefl, Influence of luminance levels of illumination D65 on evaluation of high chromatic colour, in: Proceedings of the 4th CIE expert symposium on colour and visual appearance, Commission Internationale de L'Eclairage, Vienna, 2016, pp.269-277.

Google Scholar

[7] A. Stockman, M. Langendörfer, H.E. Smithson, L.T. Sharpe, Human cone light adaptation: From behavioral measurements to molecular mechanisms, Journal of Vision 6(11) (2006) 1194-1203.

DOI: 10.1167/6.11.5

Google Scholar

[8] M.R. Luo, Ch. Li, CIE Color Appearance Models and Associated Color Spaces, in: J. Schanda (Eds.), Colorimetry: Understanding the CIE System, Wiley, Chichester, 2011, pp.255-299.

DOI: 10.1002/9780470175637.ch11

Google Scholar

[9] Stuart Anstis, The Purkinje rod-cone shift as a function of luminance and retinal eccentricity, Vision Research 42(22) (2002) 2845-2491.

DOI: 10.1016/s0042-6989(02)00267-5

Google Scholar

[10] U. Wolfe, N. Ali, Dark Adaptation and Purkinje Shift: A Laboratory Exercise in Perceptual Neuroscience, The Journal of Undergraduate Neuroscience Education 13(2) (2015) A59-A63.

Google Scholar

[11] M.R. Luo, Ch. Li, CIECAM02 and Its Recent Developments, in: C. Fernandez-Maloigne, Advanced Color Image Processing and Analysis, Springer, New York, 2013, pp.19-58.

DOI: 10.1007/978-1-4419-6190-7_2

Google Scholar

[12] R.-C. Wu, R.H. Wardman, Proposed modification to the CIECAM02 colour appearance model to include the simultaneous contrast effects, Color Research & Application 32(2) (2007) 121-129.

DOI: 10.1002/col.20297

Google Scholar

[13] M.R. Luo, G. Cui, Ch. Li, Uniform colour spaces based on CIECAM02 colour appearance model, Color Research & Application 31(4) (2006) 320-330.

DOI: 10.1002/col.20227

Google Scholar

[14] Ch. Li, Z. Li, Z. Wang, Y. Xu, M.R. Luo, G. Cui et al., Comprehensive color solutions: CAM16, CAT16 a CAM16-UCS, Color Research & Application 42(6) (2017) 703-718.

DOI: 10.1002/col.22131

Google Scholar

[15] Z. Wang, C. Gao, Y. Xu, M. Melgosa et al., Further investigation on the modified hyperbolic function in the CAM16 color appearance model, Color Research & Application 44(3) (2019) 359-366.

DOI: 10.1002/col.22347

Google Scholar

[16] J. Jiang, Z. Wang, M.R. Luo, M. Melgosa, M.H. Brill, C. Li, Optimum solution of the CIECAM02 yellow-blue and purple problems, Color Research & Application 40(5) (2014) 491-503.

DOI: 10.1002/col.21921

Google Scholar

[17] Ch. Li, Z. Li, Z. Wang, Y. Xu, M.R. Luo., G. Cui, M. Melgosa, M. Pointer, A revision of CIECAM02 and its CAT and UCS, in: Color and Imaging Conference, Society for Imaging Science and Technology, 2016, pp.208-212(5).

DOI: 10.2352/issn.2169-2629.2017.32.208

Google Scholar

[18] M. Kašparová, M. Pechová, M. Viková, M. Vik, J. Štefl, Visual evaluation samples with high chromaticity under the two types of daylight simulators, in: Proceedings of the 4th CIE expert symposium on colour and visual appearance, Commission Internationale de L'Eclairage, Vienna, 2016, pp.278-286.

Google Scholar

[19] M. Pechová, M. Viková, M. Vik, The effect of luminance level on color difference evaluation, in: FEKT VUT, Proceedings of the 23rd International Conference Light - Světlo 2019, VŠB-TUO, Ostrava, 2019, pp.55-58.

Google Scholar

[20] M. Vik, M. Viková, M. Kašparová, Color difference evaluation at high chromatic colors, Fibres and textiles (Vlákna a textil) 1 (2015) 68-74.

Google Scholar

[21] M. Melgosa, P.A. García, L. Gómez-Robledo, R. Shamey et al., Notes on the application of the standardized residual sum of squares index for the assessment of intra- and inter-observer variability in color-difference experiments, JOSA A 28(5) (2011) 949-953.

DOI: 10.1364/josaa.28.000949

Google Scholar