Molecular Docking Approach for Prediction of Enantioseparation of Chiral Ibuprofen by α-1-Acid Glycoprotein Column

Article Preview

Abstract:

A study of the molecular anchoring and inclusion complex of the R/S-ibuprofen chiral compound with α-1-acid glycoprotein (AGP) has been carried out. This study aimed to predict the chiral separation of ibuprofen using chiral column filled with AGP protein. The geometrical optimization of R/S-ibuprofen was conducted on different calculation methods to obtain the optimal molecular structure. Molecular docking approaches, specifically docking using AutodockTools software were used to predict R/S-ibuprofen separation in AGP chiral column by comparing the binding energy values and the type of interaction. Results of the study show that the best method for optimizing the geometry of ibuprofen is Density Functional Theory (DFT). Furthermore, the results of the specific anchoring of ibuprofen on the AGP shows that the binding energy of S-ibuprofen with AGP is more negative than that of R-ibuprofen, namely -5.63 and -5.55 kcal/mol, respectively, indicating that S-ibuprofen interacts more strongly with AGP and therefore it will be eluted from the AGP chiral column later after R-ibuprofen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Liu, H. Gao, Molecular structure and vibrational spectra of ibuprofen using density function theory calculations, Spectrochim. Acta A Mol. Biomol. Spectrosc. SPECTROCHIM ACTA A. 89 (2012) 201-209.

DOI: 10.1016/j.saa.2011.12.068

Google Scholar

[2] K. Grzybowska, A. Grzybowska, J. Knapik-Kowalczuk, K. Chmiel, K. Woyna-Orlewicz, J. Szafraniec-Szczęsny, A. Antosik-Rogóż, R. Jachowicz, K. Kowalska-Szojda, P. Lodowski, M. Paluch, Molecular dynamics and physical stability of ibuprofen in binary mixtures with and acetylated derivative of maltose, Mol. Pharm. 17 (8) (2020) 3087-3105.

DOI: 10.1021/acs.molpharmaceut.0c00517

Google Scholar

[3] N.H. García, D.J. Porta, R.V. Alasino, S.E. Munoz, D.M. Beltramo, Ibuprofen, a traditional drug that may impact the course of COVID-19 new effective formulation in nebulizable solution, Med. Hypotheses. 144 (2020) 1-3.

DOI: 10.1016/j.mehy.2020.110079

Google Scholar

[4] N.H. Dhekale, D.B. Gunjal, A.H. Gore, Y. Komaravolu, K.H. Bindu, G.B. Kolekar, Stereoselective HPLC separation of alvimopan on cellulose-based immobilized polysaccharide as a chiral stationary phase, Chirality. 30 (8) (2018) 1-6.

DOI: 10.1002/chir.22859

Google Scholar

[5] E.S. Nurhidayah, A.L. Ivansyah, M.A. Martoprawiro, M.A. Zulfikar, A molecular docking study to predict enantioseparation of some chiral carboxylic acid derivatives by methyl-β-cyclodextrin, J. Phys. Conf. Ser. 1013 (2018) 1-9.

DOI: 10.1088/1742-6596/1013/1/012203

Google Scholar

[6] R.D. Dennington, T.A. Keith, J.M. Millam, GaussView 5.0.8., (2008).

Google Scholar

[7] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonneberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr.J.A. Montgomery J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Sratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochteriski, P. Salvador, J.J. Danneberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 Revision D.01., (2009).

Google Scholar

[8] S. Bua, L.D.C. Mannelli, D. Vullo, C. Ghelardini, G. Bartolucci, A. Scozzafava, C.T. Supuran, F. Carta, Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis, J. Med. Chem. 60 (3) (2017) 1159-1170.

DOI: 10.1021/acs.jmedchem.6b01607

Google Scholar

[9] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004) 1605–1612.

DOI: 10.1002/jcc.20084

Google Scholar

[10] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791.

DOI: 10.1002/jcc.21256

Google Scholar

[11] N.B.A. Khairudin, N.S.F. Mazlan, Molecular docking study of beta-glucosidase with cellobiose, cellotetraose and cellotetriose, Bioinformation. 9 (16) (2013) 813–817.

DOI: 10.6026/97320630009813

Google Scholar

[12] D.S. Biovia, Discovery Studio 2020, San Diego, (2020).

Google Scholar

[13] C.B.R. Santos, C.C. Lobato, M.A.C. de Sousa, W.J.C. Macêdo, J.C.T. Carvalho, Molecular modeling: origin, fundamental concepts and applications using structure-activity relationship and quantitative structure-activity relationship, Rev. Theor. Sci. 2 (2) (2014) 91–115.

DOI: 10.1166/rits.2014.1016

Google Scholar

[14] K.I. Ramachandran, G. Deepa, K. Namboori, Computational chemistry and molecular modeling principles and applications, Springer Verlag, Berlin, (2008).

Google Scholar

[15] S.R. Arsad, H. Maarof, W.A.W. Ibrahim, H.Y. Aboul-enein, Theoretical and molecular docking study of ketoconazole on heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin as chiral selector, Chirality. 28 (2016) 209-214.

DOI: 10.1002/chir.22554

Google Scholar

[16] D.L. Schönfeld, R.B.G. Ravelli, U. Mueller, A. Skerra, The 1.8-Å crystal structure of α1-acid glycoprotein (orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin, J. Mol. Biol. 384 (2) (2008) 393-405.

DOI: 10.1016/j.jmb.2008.09.020

Google Scholar