Molecular Docking Approach for Prediction of Chromatographic Chiral Separation of Ketorolac Using AGP Column

Article Preview

Abstract:

Prediction of chiral separation of R- and S-ketorolac has been carried out using a molecular docking approach. Geometry optimization using different calculation methods suggests that Hartree-Fock (HF)/6-31G is the best method to describe the most stable ketorolac structure. Docking studies have been performed on AutoDock and Gaussian software. Molecular docking results were used to predict the separation of ketorolac enantiomers in the AGP (alpha-1-acid-glycoprotein) chiral column by comparing the binding energies and types of interaction. To ensure the accuracy of the results, not only specific docking was performed, but blind docking was also conducted in this study. The results of the study show that the binding energy of S-ketorolac is more negative than that of R-ketorolac, indicating that stronger interaction between S-ketorolac and AGP occurs. Therefore, the R-ketorolac will be eluted first from the AGP column followed by S-ketorolac. As expected, this prediction is in good agreement with the experimental results of the separation of ketorolac enantiomers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Buckley, R.N. Brogden, Ketorolac. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential, Drugs. 39 (1) (1990) 86–109.

DOI: 10.2165/00003495-199039010-00008

Google Scholar

[2] E. Mroszczak, D. Combs, M. Chaplin, I. Tsina, T. Tarnowski, C. Rocha, Y. Tam, A. Boyd, J. Young, L. Depass, Chiral kinetic and dinamics of ketorolac, J. Clin. Pharmacol. 36 (6) (1996) 521- 539.

DOI: 10.1002/j.1552-4604.1996.tb05042.x

Google Scholar

[3] K.R. Ing-Lorenzini, J.A. Desmeules, M. Bessona, J. Veuthey, P. Dayer, Y. Daali, Two-dimensional liquid chromatography–ion trap mass spectrometry for the simultaneous determination of ketorolac enantiomers and paracetamol in human plasma: application to a pharmacokinetic study, J. Chromatogr. A. 1216 (18) (2009) 3851–3856.

DOI: 10.1016/j.chroma.2009.02.071

Google Scholar

[4] B.L. Strom, J.A. Berlin, J.L. Kinman, P.W. Spitz, S. Hennessy, H. Feldman, S. Kimmel, J.L. Carson, Parenteral ketorolac and risk of gastrointestinal and operative site bleeding. A postmarketing surveillance study, JAMA. 275 (5) (1996) 376–382.

DOI: 10.1097/00132586-199702000-00029

Google Scholar

[5] M. Singh, R. Bhushan, Thin-layer chromatographic enantioresolution of (RS)-ketorolac using L-amino acids as chiral additive in stationary phase, J. Planar Chromat. 32 (6) (2019) 475–479.

DOI: 10.1556/1006.2019.32.6.5

Google Scholar

[6] Y. He, Y. Wu, L. Cheng, S. He, Q. Wang, H. Wang, Y. Ke, Separation of ketorolac enantiomers on polysaccharide-based chiral stationary phases using a polar organic mobile phase, Sep. Sci. Plus. 1 (2018) 351–358.

DOI: 10.1002/sscp.201800048

Google Scholar

[7] M. Pérez-Venegas, A.M. Rodríguez-Treviño, E. Juaristi, Dual mechanoenzymatic kinetic resolution of (±)-ketorolac, ChemCatChem. 12 (6) (2020) 1782–1788.

DOI: 10.1002/cctc.201902292

Google Scholar

[8] K.S. Dubey, J. Hemantha, C.K. Venkatesh K., R.N. Saha, S. Pasha, New chiral reverse phase HPLC method for enantioselective analysis of ketorolac using chiral AGP column, J. Pharm. Anal. 2 (6) (2012) 462–465.

DOI: 10.1016/j.jpha.2012.07.006

Google Scholar

[9] Hidayah, Validation of the analysis method of ketorolac chiral compound from pharmaceutical preparation using HPLC method, Skripsi, (2020).

Google Scholar

[10] E.S. Nurhidayah, A.L. Ivansyah, M.A. Martoprawiro, M.A. Zulfikar, A molecular docking study to predict enantioseparation of some chiral carboxylic acid derivatives by methyl-β- cyclodextrin, J. Phys. Conf. Ser. 1013 (1) (2018) 012203.

DOI: 10.1088/1742-6596/1013/1/012203

Google Scholar

[11] G. Fernández-Ballester, A. Fernández-Carvajal, J.M. González-Ros, A. Ferrer-Montiel, Ionic channels as targets for drug design: a review on computational methods, Pharmaceutics. 3 (4) (2011) 932–953.

DOI: 10.3390/pharmaceutics3040932

Google Scholar

[12] S. Bua, L.D.C. Mannelli, D. Vullo, C. Ghelardini, G. Bartolucci, A. Scozzafava, C.T. Supuran, F. Carta, Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis, J. Med. Chem. 60 (3) (2017) 1159–1170.

DOI: 10.1021/acs.jmedchem.6b01607

Google Scholar

[13] K. Mena-Ulecia, W. Tiznado, J. Caballero, Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA, PloS One. 10 (11) (2015) e0142774.

DOI: 10.1371/journal.pone.0142774

Google Scholar

[14] B. Amul, S. Muthu, M. Raja, S. Sevvanthi, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV-VIS), chemical reactivity and biological examinations of Ketorolac, Journal of Molecular Structure. 1210 (2020) 128040.

DOI: 10.1016/j.molstruc.2020.128040

Google Scholar

[15] L.D.C. Mannelli, D. Bani, A. Bencini, M.L. Brandi, L. Calosi, M. Cantore, A.M. Carossino, C. Ghelardini, B. Valtancoli, P. Failli, Therapeutic effects of the superoxide dismutase mimetic compound MnIIMe2DO2A on experimental articular pain in rats, Mediat. Inflamm. (2013) 905360.

DOI: 10.1155/2013/905360

Google Scholar

[16] A. Barakat, H.J. Al-Najjar, A.M. Al-Majid, S.M. Soliman, Y.N. Mabkhot, M.R. Shaik, H.A. Ghabbour, H. Fun, Synthesis, NMR, FT-IR, X-ray structural characterization, DFT analysis and isomerism aspects of 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione, Spectrochim. Acta A Mol. Biomol. Spectrosc. 147 (2015) 107–116.

DOI: 10.1016/j.saa.2015.03.016

Google Scholar

[17] N.F. Roslan, S.F.Z. Mustafa, H. Maarof, S.N.Md. Ajeman, W.A.W Ibrahim, Molecular docking and density functional theory calculations of vinpocetine and teicoplanin aglycone chiral selector, J. Incl. Phenom. Macrocycl. Chem. 98 (2020) 187–195.

DOI: 10.1007/s10847-020-01015-9

Google Scholar

[18] S.S.W. Waskitha, F.E. Mulyana, N.F. Riza, Y.M. Stansyah, I. Tahir, T.D. Wahyuningsih, QSAR Approach and synthesis of chalcone derivatives as antimalarial compound against Plasmodium Falciparum 3D7 Strain, Rasayan J. Chem. 14 (2021) 2363–2370.

DOI: 10.31788/rjc.2021.1445867

Google Scholar

[19] T. Lengauer, M.Rarey, Computational methods for biomolecular docking, Curr. Opin. Struct. Biol. 6 (3) (1996) 402–406.

Google Scholar