Synthesis of Carboxymethyl Cellulose/Bentonite/N-P-K Composite as Slow-Release Fertilizer Model Using Twin-Screw Extruder

Article Preview

Abstract:

CMC/Bentonite/N-P-K composites have been prepared as the macronutrient slow-release fertilizer. The composites were made by mixing natural bentonite, carboxymethyl cellulose (CMC), and N-P-K using a twin-screw extruder at 100 °C and screw rate of 600 rpm. The weight ratio of CMC to N-P-K was set at 1:0.5. The mass of bentonite was varied at 0.1; 0.5; and 1 (wt.%). The composites were characterized using infrared (IR) spectroscopy and X-ray diffraction (XRD). Mechanical properties of the composites were evaluated through tensile and compressive strength, water absorption capacity and stability test in water. It is found that increasing the natural bentonite ratio in the composite decreased the tensile and compressive strength but increased water absorption capacity and stability. The release of N-P-K from CMC/Bentonite/N-P-K followed the kinetic release model of pseudo-second-order.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-60

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Havlin, S.L. Tisdale, W.L. Nelson, J.D. Beaton, Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 7th Edition, Pearson, Canada, (2005).

Google Scholar

[2] E. Corradini, M.R. de Moura, L.H.C. Mattoso, A preliminary study of the incorporation of N-P-K fertilizer into chitosan nanoparticles, Express Polym. Lett. 4 (2010) 509–515.

DOI: 10.3144/expresspolymlett.2010.64

Google Scholar

[3] M.E. Trenkel, Slow and Controlled Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, International Fertilizer Industry Association (IFA), France, (2010).

Google Scholar

[4] A. Olad, H. Zebhi, D. Salari, A. Mirmohsen, A.R. Tabar, Slow-release N-P-K fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil, Mater.Sci.Eng,C. 90 (2018) 333-340.

DOI: 10.1016/j.msec.2018.04.083

Google Scholar

[5] I. Kartini, E.T. Lumbantobing, S. Suyanta, S.Sutarno, Bioplastic Composite of Carboxymethyl Cellulose/N-P-K Fertilizer, Key.Eng Mat. 840(2020) 156-161.

DOI: 10.4028/www.scientific.net/kem.840.156

Google Scholar

[6] E.I. Pereira, F.B. Minussi, C.C.T da Cruz, A.C.C. Bernardi, C. Ribeiro, Urea-Montmorillonite-Extruded Nanocomposites: A Novel Slow-Release Material, J.Agric.Food.Chem. 60 (2012) 5267-5272.

DOI: 10.1021/jf3001229

Google Scholar

[7] M. Mollan, Historical Overview in Pharmaceutical Extrusion Technology, Marcel Dekker, Inc., New York, pp.1-18, (2003).

Google Scholar

[8] K.A. Adekola, Engineering Review Food Extrusion Technology and Its Applications,J. Food Eng. 6 (2016) 149-168.

Google Scholar

[9] M.P. Adinugraha, D.W. Marseno, Haryadi, Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT), Carbohydr. Polym. 62 (2005) 164-169.

DOI: 10.1016/j.carbpol.2005.07.019

Google Scholar

[10] A. Bortolin, F.A. Aouada, L.H.C. Mattoso, C. Ribeiro, Nanocomposite PAAm/Methyl Cellulose/Monmorillonnie Hydrogel: Evidence of Synergistic Effect for The Slow-Release of Fertilizers,J.Agric.Food.Chem. 61 (2013) 7431-7439.

DOI: 10.1021/jf401273n

Google Scholar

[11] K. Rop, G.N. Karuku, D. Mbui, I. Michira, N. Njomo, Formulation of Slow-Release N-P-K Fertilizer (Cellulose-Graft-Poly (Acrylamide)/Nano-Hydroxyapatite/Soluble Fertilizer) Composite and Evaluating its N Mineralization Potential, Ann. Agric. Sci. 63 (2018) 163–172.

DOI: 10.1016/j.aoas.2018.11.001

Google Scholar

[12] S. K. Moosvi, K. Majid, T.Ara, Studying the electrical, thermal, and photocatalytic activity of nanocomposite of polypyrol with the photoadduct of K3[Fe(CN)6] and diethylenetriamine, Mater.Res. (2016).

DOI: 10.1590/1980-5373-mr-2015-0786

Google Scholar

[13] M. Poletto, H.L. Ornaghi, B. Neelakantaprasad, G. Rajarajan, Native cellulose: Structure, characterization and thermal properties, Materials. 7 (2014) 6105-6119.

DOI: 10.3390/ma7096105

Google Scholar

[14] Q. Qian, Q. Chen, M. Machida, H. Tatsumoto, K. Mochidzuki, A. Sakoda, Removal of organic contaminants from aqueous solution by cattle manure compost (CMC) derived activated carbons, Appl. Surf. Sci. 255 (2009) 6107-6114.

DOI: 10.1016/j.apsusc.2009.01.060

Google Scholar

[15] M.N. Hafiza, M.I.N. Isa, Solid Polymer Electrolyte Production from 2- Hydroxyethyl Cellulose: Effect of Ammonium Nitrate Composition on its Structural Properties, Carbohydr. Polym. 165 (2017) 123-131.

DOI: 10.1016/j.carbpol.2017.02.033

Google Scholar

[16] S. Rimdusit, S. Jingjid, S. Damrongsakkul, S. Tiptipakorn, T.Takeichi, Biodegradability and property characterizations of Methyl Cellulose: Effect of nanocompositing and chemical crosslinking, Carbohydr.Polym. 72 (2008) 444-455.

DOI: 10.1016/j.carbpol.2007.09.007

Google Scholar

[17] D. Chopra, R. Siddique, Kunal, Strength, Permeability and Microstructure of Self-Compacting Concrete Containing Rice Husk Ash, Biosyst. Engi. 130 (2015) 72-80.

DOI: 10.1016/j.biosystemseng.2014.12.005

Google Scholar

[18] D.J. Sarkar, A.Singh, P.Manal, A. Kumar, B.S. Parmar, Synthesis and Characterization of Poly (CMC-g-cl-PAam/Zeolite) Superabsorbent Composites for Controlled Delivery of Zinc Micronutrient: Swelling and Release Behavior, Polym-Plast.Technol. Eng. 54 (2015) 357 – 367.

DOI: 10.1080/03602559.2014.958773

Google Scholar

[19] Y.S. Ho, G. McKay, The Sorption of Lead (II) Ions on Peat, Wat. Res, 33 (1999) 578-584.

DOI: 10.1016/s0043-1354(98)00207-3

Google Scholar

[20] R. Gouda, H. Baishya, Z. Qing, Application of mathematical models in drug release kinetics of Carbidopa and Levodopa ER Tablets, J. Dev. Drugs. 6 (2017) 1-8.

DOI: 10.4172/2329-6631.1000171

Google Scholar